本文目录一览

1,半导体制冷技术

【解答】半导体制冷又称电子制冷,或者温差电制冷,是从50年代发展起来的一门介于制冷技术和半导体技术边缘的学科,它利用特种半导体材料构成的P-N结,形成热电偶对,产生珀尔帖效应,即通过直流电制冷的一种新型制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。

半导体制冷技术

2,半导体制热制冷的原理

压缩机制热制冷是利用的制冷剂相变会吸收或释放热量的原理。半导体制冷利用的是Peltier效应。即:电流流过两种不同能级的材料的界面时,热量也会发生定向传导,使得界面两侧一边冷、一边热。半导体材料可以实现材料间的最大能级差,具有实用性。由于半导体材料的导热率,半导体制冷的效率远小于压缩机制冷。只能用于一些特殊场合。

半导体制热制冷的原理

3,什么是半导体制冷

摘 要:半导体制冷又称电子制冷,或者温差电制冷,是从上世纪50年代发展起来的一种新制冷技术,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。
确实如提问者想的那样,半导体制冷器件标定的最大(制冷)温差就是指热端和冷端的温度差,如果热端散热工作做好了,温度低,那么冷端也会相应的低;另外提醒下,热端要做好散热,冷端也要做好散热,如果冷端出现结冰现象,制冷效果也会大打折扣

什么是半导体制冷

4,半导体制冷原理

半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关,即: Qab=Iπab πab称做导体A和B之间的相对帕尔帖系数 ,单位为[V], πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab 帕尔帖系数的大小取决于构成闭合回路的材料的性质和接点温度,其数值可以由赛贝克系数αab[V.K-1]和接头处的绝对温度T[K]得出πab=αabT与塞贝克效应相,帕尔帖系也具有加和性,即: Qac=Qab+Qbc=(πab+πbc)I 因此绝对帕尔帖系数有πab=πa- πb 金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的。

5,半导体冰箱是怎样工作的

他是由一块电子制冷晶片工作的其原理是:利用帕尔帖(peltire)效应,1834年法国科学家珀尔贴发现了热电致冷和致热现象-即温差电效应。由N、P型材料组成一对热电偶, 当热电偶通入直流电流后,因直流电通入的方向不同, 将在电偶结点处产生吸热和放热现象,称这种现象为珀尔帖效应。 半导体致冷器, 也叫热电致冷器或温差致冷器, 它采用了帕尔贴效应.目前采用半导体材料锑化铋做成N型和P型热电偶,用模块的方法组成半导体制冷器件.N型材料有多余的电子,有负温差电势.P型材料电子不足,有正温差电势;当电子从P型穿过结点至N型时,其能量必然增加,而且增加的能量相当于结点所消耗的能量.相反,当电子从N型流至P型材料时, 结点的温度就会升高. 在温差电路中引入第三种材料(铜连接片和导线) 不会改变电路的特性.把一只P型半导体和一只N型半导体联结成热电偶, 接上直流电源后, 在接头处就会产生温差和热量的转移.把若干对半导体热电偶对在电路上串联起来, 而在传热方面则是并联的, 这就构成了一个常见的制冷热电堆. 借助热交换器等各种传热手段, 使热电堆的热端不断散热并且保持一定的温度, 把热电堆的冷端放到工作环境中去吸热降温, 这就是半导体制冷的原理.
1.制冷温度与环境温度有关(一般低于环境温度20度),不能制冰 (此问题也可以通过多级制冷片串联来解决,但是串联后必须加强散热,否则容易烧毁制冷片)2.冰箱容积不能超过100升(高于100升,其制冷效果下降,耗电量增加)3.因为制冷片一面散热,而且产热多,所以必须使用散热设备,这也增加了半导体冰箱的成本,如果使用风扇,还会增加耗电量,产生轻微噪音。4.半导体冰箱在做较大的冰箱时成本较高,不利于大规模推广。
半导体制冷,比如左右面,接上12v直流电,正极接半导体的正极,负极接半导体的负极,这样正面是冷,反面就是热了,你把电源再反过来那么正面就是热,反面就是冷。前提是必须要有散热风扇或着散热片,不然很快就会烧了的。如果只有热,没有冷,对不起,那就是半导体坏了。只要做好保温就行了,用聚氨酯泡沫就可以作保温,需要一个大功率的电源或者一个电瓶,这个家伙也有几十W呢。最好用个支架,来固定风扇和散热片。切记:一定要装散热片和风扇! 如果不插风扇可以瞬间试个几秒,感觉凉了那边热了就行了。不要太长时间通电(不装风扇的情况下)

6,集成电路块制冷的原理是什么

半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关,即: Qab=Iπabπab称做导体A和B之间的相对帕尔帖系数 ,单位为[V], πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab帕尔帖系数的大小取决于构成闭合回路的材料的性质和接点温度,其数值可以由赛贝克系数αab[V.K-1]和接头处的绝对温度T[K]得出πab=αabT与塞贝克效应相,帕尔帖系也具有加和性,即:Qac=Qab+Qbc=(πab+πbc)I因此绝对帕尔帖系数有πab=πa- πb金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的。制冷材料AVIoffe和AFIoffe指出,在同族元素或同种类型的化合物质间,晶格热导率Kp随着平均原子量A的增长呈下降趋势。RWKeyes通过实验推断出,KpT近似于Tm3/2ρ2/3A-7/6成比例,即近似与原子量A成正比,因此通常应选取由重元素组成的化合物作为半导体制冷材料。半导体制冷材料的另一个巨大发展是1956年由AFIoffe等提出的固溶体理论,即利用同晶化合物形成类质同晶的固溶体。固溶体中掺入同晶化合物引入的等价置换原子产生的短程畸变,使得声子散射增加,从而降低了晶格导热率,而对载流子迁移率的影响却很小,因此使得优值系数增大。例如50%Bi2Te3-50%Bi2Se3固溶体与Bi2Te3相比较,其热导率降低33%,而迁移率仅稍有增加,因而优值系数将提高50%到一倍。Ag(1-x)Cu(x)Ti Te、Bi-Sb合金和YBaCuO超导材料等曾经成为半导体制冷学者的研究对象,并通过实验证明可以成为较好的低温制冷材料。下面将分别介绍这几种热电性能较好的半导体制冷材料。二元固溶体,无论是P型还是N型,晶格热导率均比Bi2Te3有较大降低,但N型材料的优值系数却提高很小,这可能是因为在Bi2Te3中引入Bi2Se3时,随着Bi2Se3摩尔含量的不同呈现出两种不同的导电特性,势必会使两种特性都不会很强,通过合适的掺杂虽可以增强材料的导电特性,提高材料的优值系数,但归根结底还是应该在本题物质上有所突破。
你好!在它的左右通以直流电,则它的上下面就会有温差,这就是它制冷原理。利用的是半导体制冷原理,设有一块长方体半导体(里面也有PN结)不叫集成电路块制冷,叫半导体制冷如有疑问,请追问。
半导体制冷的原理:半导体制冷的原理利用的是半导体制冷原理,设有一块长方体半导体(里面也有PN结),在它的左右通以直流电,则它的上下面就会有温差,这就是它制冷原理。具体应用要加装散热器,并且还要用风翩来帮助加大热交换。半导体制冷简介:半导体制冷是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于锗(Ge)的集成电路)和罗伯特·诺伊思(基于硅(Si)的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。
不叫集成电路块制冷,叫半导体制冷。利用的是半导体制冷原理,设有一块长方体半导体(里面也有PN结),在它的左右通以直流电,则它的上下面就会有温差,这就是它制冷原理。具体应用要加装散热器,并且还要用风翩来帮助加大热交换。

文章TAG:半导体  体制  制冷  制冷技术  半导体制冷  
下一篇