本文目录一览

1,简述交换机的工作原理

学习 转发 广播(泛洪) 更新

简述交换机的工作原理

2,交换机原理是

只能简单说说 二层交换机维护一张mac地址和交换机端口的对应表,按照表格进行转发,表格中没有的帧就转发给所有的端口。 三层交换机维护一张ip地址和交换机端口的对应表,按照表格进行转发,表格中没有的帧就交给路由模块。

交换机原理是

3,交换机原理的工作原理

端口地址表记录了端口下包含主机的MAC地址。端口地址表是交换机上电后自动建立的,保存在RAM中,并且自动维护。交换机隔离冲突域的原理是根据其端口地址表和转发决策决定的。 交换机的转发决策有三种操作:丢弃、转发和扩散。丢弃:当本端口下的主机访问已知本端口下的主机时丢弃。转发:当某端口下的主机访问已知某端口下的主机时转发。扩散:当某端口下的主机访问未知端口下的主机时要扩散。每个操作都要记录下发包端的MAC地址,以备其它主机的访问。 生存期是端口地址列表中表项的寿命。每个表项在建立后开始进行倒记时,每次发送数据都要刷新记时。对于长期不发送数据的主机,其MAC地址的表项在生存期结束时删除。所以端口地址表记录的总是最活跃的主机的MAC地址。(4)应该说交换机有很多值得学习的地方,这里我们主要介绍交换机结构及组网方式,21世纪10年代以来网络应用越来越广泛,交换机作为网络中的纽带发挥了越来越大的作用。简单的说,交换机就是将它与用户计算机相连就行了,完成各个计算机之间的数据交换。复杂来说,交换机针对在整个网络中的位置而言,一些高层交换机如三层交换、网管型的产品,在交换机结构方面就没这么简单了。 作为网络的重要连接设备,交换机在实际使用中相当频繁。对于一般家庭用户而言,比较复杂的应用就是交换机的级联结构了;而三层路由、堆叠等高级应用一般在企业中应用较多。

交换机原理的工作原理

4,交换机的工作原理

原理 工作在数据链路层,交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的mac(网卡的硬件地址)的nic(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的mac若不存在,广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部mac地址表中。使用交换机也可以把网络“分段”,通过对照ip地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的减少冲突域,但它不能划分网络层广播,即广播域。交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点a向节点d发送数据时,节点b可同时向节点c发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。假使这里使用的是10mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10mbps=20mbps,而使用10mbps的共享式hub时,一个hub的总流通量也不会超出10mbps。总之,交换机是一种基于mac地址识别,能完成封装转发数据帧功能的网络设备。交换机可以“学习”mac地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
交换机的工作原理: ·交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。 ·交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。 ·如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称之为泛洪(flood)。 ·广播帧和组播帧向所有的端口转发。
简单的说就是“储存转发”将收到的数据储存起来,然后通过分析转发到相应的端口
原发布者:wulianxi交换机的功能及工作过程By:吾怜茜一.交换机概述:交换机是一种工作在二层的设备,但是随着技术的不断进步,现在已经出现了诸如三层交换机,多层交换机产品。在本篇中讨论的是二层交换机的一些特性。二.交换机的功能:1.地址学习有些地方也叫做基于源MAC地址学习,这个功能主要就是学习和存储MAC地址。2.帧的转发/过滤数据帧的转发主要是交换机能够根据MAC地址表来转发数据,过滤则是对一些受限制的数据进行阻止或丢弃。3.环路避免由于交换机的某些特性会带来一些问题,比如形成环路,因此为了保证网络上数据的正确传输以及网络的稳定要采取一些措施来避免这些问题,主要是通过STP来实现,稍后会讲到。三.交换机的工作过程:交换机在运行的时候要维护几张表,比如CAM表,vlan.data表。CAM表用来保存学到的MAC地址;VLAN.DATA文件用来保存VLAN相关的信息。1.在交换机初始加电的时候它的MAC地址表是空的,当其他与其相连的设备(PC,交换机,路由器等)向它发送一个信息的时候,交换机就会根据数据的源MAC和目标MAC对数据进行处理,因为发的是第一个包,所以这时候交换机会把源MAC地址和数据从本交换机进来的端口号做关联,然后加上VLAN号保存起来形成一个CAM表条目。因为交换机的MAC地址表现在是空的,所以它不知道数据的目的地在那里,这时候交换机会发送ARP请求把数据从除了数据进来的端口之外的所有端口广播,这个过程称为泛洪,

5,交换机的工作原理是怎么样的

交换机的工作原理: 交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。 交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。 如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称之为泛洪(flood)。 广播帧和组播帧向所有的端口转发。 交换机的三个主要功能: 学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。 转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。 消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。 交换机的工作特性: 交换机的每一个端口所连接的网段都是一个独立的冲突域。 交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(唯一的例外是在配有VLAN的环境中)。 交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备 交换机的分类: 依照交换机处理帧的不同的操作模式,主要可分为两类。 存储转发:交换机在转发之前必须接收整个帧,并进行检错,如无错误再将这一帧发向目的地址。帧通过交换机的转发时延随帧长度的不同而变化。 直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。 注意: 直通式的转发速度大大快于存储转发模式,但可靠性要差一些,因为可能转发冲突 帧或带CRC错误的帧。 生成树协议 消除回路: 在由交换机构成的交换网络中通常设计有冗余链路和设备。这种设计的目的是防止一个点的失败导致整个网络功能的丢失。虽然冗余设计可能消除的单点失败问题,但也导致了交换回路的产生,它会导致以下问题。 广播风暴 同一帧的多份拷贝 不稳定的MAC地址表 因此,在交换网络中必须有一个机制来阻止回路,而生成树协议(Spanning Tree Protocol)的作用正在于此。 生成树的工作原理: 生成树协议的国际标准是IEEE802.1b。运行生成树算法的网桥/交换机在规定的间隔(默认2秒)内通过网桥协议数据单元(BPDU)的组播帧与其他交换机交换配置信息,其工作的过程如下: 通过比较网桥优先级选取根网桥(给定广播域内只有一个根网桥)。 其余的非根网桥只有一个通向根交换机的端口称为根端口。 每个网段只有一个转发端口。 根交换机所有的连接端口均为转发端口。 注意:生成树协议在交换机上一般是默认开启的,不经人工干预即可正常工作。但这种自动生成的方案可能导致数据传输的路径并非最优化。因此,可以通过人工设置网桥优先级的方法影响生成树的生成结果。 生成树的状态: 运行生成树协议的交换机上的端口,总是处于下面四个状态中的一个。在正常操作 期间,端口处于转发或阻塞状态。当设备识别网络拓扑结构变化时,交换机自动进行状态转换,在这期间端口暂时处于监听和学习状态。 阻塞:所有端口以阻塞状态启动以防止回路。由生成树确定哪个端口转换到转发状态,处于阻塞状态的端口不转发数据但可接受BPDU。 监听:不转发,检测BPDU,(临时状态)。 学习:不转发,学习MAC地址表(临时状态)。 转发:端口能转送和接受数据。 小知识:实际上,在真正使用交换机时还可能出现一种特殊的端口状态-Disable状态。这是由于端口故障或由于错误的交换机配置而导致数据冲突造成的死锁状态。如果并非是端口故障的原因,我们可以通过交换机重启来解决这一问题。 生成树的重计算: 当网络的拓扑结构发生改变时,生成树协议重新计算,以生成新的生成树结构。当所有交换机的端口状态变为转发或阻塞时,意味着重新计算完毕。这种状态称为会聚(Convergence)。 注意:在网络拓扑结构改变期间,设备直到生成树会聚才能进行通信,这可能会对 某些应用产生影响,因此一般认为可以使生成树运行良好的交换网络,不应该超过七层。此外可以通过一些特殊的交换机技术加快会聚的时间。

6,交换机的工作原理是什么

原发布者:sxyzzk1交换机的工作原理1.交换机的工作原理当交换机收到数据时,它会检查它的目的MAC地址,然后把数据从目的主机所在的接口转发出去。交换机之所以能实现这一功能,是因为交换机内部有一个MAC地址表,MAC地址表记录了网络中所有MAC地址与该交换机各端口的对应信息。某一数据帧需要转发时,交换机根据该数据帧的目的MAC地址来查找MAC地址表,从而得到该地址对应的端口,即知道具有该MAC地址的设备是连接在交换机的哪个端口上,然后交换机把数据帧从该端口转发出去。例:某网络如图4-7所示。图4-7交换机地址表表4.1端口/MAC地址映射表假设主机pc1向主机pc7发送一个数据帧,该数据帧被送到交换机后,交换机首先查MAC地址表,发现主机pc7连接在E0/24接口上,就将数据帧从E0/24接口转发出去。2、MAC地址表的构建过程为快速转发报文,以太网交换机需要建立和维护MAC地址表。交换机采用源MAC地址学习的方法建立MAC地址表。以图4-7为例说明交换机的地址学习过程。(1)交换机初始状态交换机的初始状态MAC地址表为空,如图4-8所示。(2)地址表源MAC地址学习当计算机PC1要发送数据帧给计算机PC6时,因此时地址表是空的,交换机将向除PC1连接端口E0/1以外的其他所有端口转发数据帧。在转发之前,首先检查该数据帧的源MAC地址(00-10-B5-4B-30-85),并在交换机的MAC地址表中添加一条记录(00-10-B5-4B-30-85,E0/1)使之和端口E0/1相对应。(3)计算机PC6接收数据帧计算机PC6收到发送的数据帧后,用该
二层交换机工作在数据链路层,主要用于转发数据帧,基于MAC地址表进行寻址,具体工作过程如下:(1)首次寻找局域网某台计算机MAC地址,会以广播包的形式在链路上转发;该广播包中包含发送端的MAC地址。(2)接收端收到该信息后,记录发送端MAC地址,并回复自身MAC地址信息;(3)交换机记录MAC地址,再次发送同样MAC地址时查询MAC地址表,匹配到信息后发送单播包。三层交换机工作在网络层,其技术原理包含:二层交换技术+三层转发技术,具体工作过程如下:(1)假设两个使用IP协议的站点A、B通过三层交换机进行通信,发送站点A在数据发送前,将自己的IP地址与B站的IP地址进行比较,判断B站是否与自己在同一子网内。(2)若目的站B与发送站A在同一子网内,则进行二层的转发。若两个站点不在同一子网内,如发送站A要与目的站B通信,发送站A就需要向三层交换模块发出ARP请求,当发送站A对三层交换模块广播出一个ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址;否则三层交换模块会根据路由信息向B站广播一个ARP请求,B站得到ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存地址并回复给发送站A,同时将B站的MAC地址发送到二层引擎的MAC地址表中。此后,A向B发送的数据包便全部交给二层交换处理,能够更好地实现信息高速转发。
如果你知道mac和IP地址概念,那么用“交换机工作原理”作关键字,去看知道或文库都有相应的介绍,如果不清楚哪就比较麻烦。先这样理解:mac就好像人的指纹(或者声波、虹膜等原始唯一特征),无论计算机在哪儿上网mac都不会变;ip则是对外身份证明,就像身份证,入了某国的国籍就要换。也就是说在家里上网和在公司上网你的ip是不同的,而一旦入互联网(段),这次的身份证却是唯一的(和别人不同)。上网相当于一个人入世,不上网的计算机就是一个山野人士,登不登记身份无所谓。再说一下通讯中mac和ip的应用过程。首先,网络访问通常是有目标的,就是知道目标ip是什么,这是由用户确定的目标,但用户很难知道(也不需要知道)目标的mac。当访问请求发出后(其信息中包含了自己的mac、ip和目标ip,但目标mac空白),如果目标存在则会根据访问者提供的源IP产生回应,并告知访问者自己的mac,同时也会记住访问者的mac。访问者收到回应后也就记住了目标的mac,之后的通讯地址中都会首先包含完整的ip和mac信息。讨论交换机之前必须先说一下集线器,集线器也是将若干台电脑捏到一起的设备。你可以想象成一个大杂院,大家都不出门而是通过一根管子通话,各家各户的管子都接到了一个通讯室中(即相互之间不能直接通话),且有一个人负责传话(转发)。通话第一步是要让传话人知道我要和谁通话,即告知传话人目标mac和ip,当然传话人也不知道这个目标mac或ip是谁(很笨),传话人会向所有管道喊这个指纹(第一次是身份证)是谁的?没人回答则失败,有则完成本次转发。注意转发过程中,传话人会堵上其他所有的管子(只留两个),也就是说此时其他人只能闭嘴。在专业术语中,这样一个网络环境叫做一个冲突域,也就是一对用户通讯时,其他用户等待。交换机则相当于通讯室中有足够多的人负责传话工作,当传话人1负责甲、乙两个用户通讯时,传话人2可以(在同一时刻)负责丙、丁两个用户的通讯,当然此时其他用户不能和这四个用户通讯,也就是说交换机的每一个端口是一个冲突域。由于首次通讯交换机不知道目标mac,所以交换机依然会采用广播方式询问所有端口(广播时禁止其他通讯),一旦得到响应后,交换机会记住该mac对应的端口,后续通讯则不再需要广播(除非mac被清除)。因此,专业术语中交换机形成的网络称为广播域。以上是最简单的交换说明,想成为专业人士就要去找专业文章,很多东西不是一堂课能说清楚的。
简单来说,每台接交换机的计算机(或类似设备),都会把mac地址告诉交换机,交换机记着哪个口来的mac地址,然后记录在一个叫fabric表里,这个表就是MAC地址和端口的对应表。交换机就是根据每个帧的目的MAC地址(这个目的MAC地址,是通过上一层路由设备的ARP询问而得到的),找到哪个端口把数据转发出去。
在计算机网络系统中,交换概念的提出是对于共享工作模式的改进。我们以前介绍过的hub集线器就是一种共享设备,hub本身不能识别目的地址,当同一局域网内的a主机给b主机传输数据时,数据包在以hub为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽。 交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的mac(网卡的硬件地址)的nic(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的mac若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部mac地址表中。 使用交换机也可以把网络“分段”,通过对照mac地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。 交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点a向节点d发送数据时,节点b可同时向节点c发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。假使这里使用的是10mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10mbps=20mbps,而使用10mbps的共享式hub时,一个hub的总流通量也不会超出10mbps。 总之,交换机是一种基于mac地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”mac地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。

文章TAG:交换  交换机  原理  简述  交换机原理  
下一篇