本文目录一览

1,什么是光电效应根据其表现形式如何分类

在光线的作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应.当光照射在物体上,使物体的电阻率ρ发生变化,或产生光生电动势的现象叫做内光电效应,它多发生于半导体内.根据工作原理的不同,内光电效应分为光电导效应和光生伏特效应两类.

什么是光电效应根据其表现形式如何分类

2,什么叫做内光电效应

是光电效应的一种,主要由于光量子作用,引发物质电化学性质变化。内光电效应又可分为光电导效应和光生伏特效应。    光电导效应:当入射光子射入到半导体表面时,半导体吸收入射光子产生电子空穴对,使其自生电导增大。光生伏特效应:当一定波长的光照射非均匀半导体(如PN结),在自建场的作用下,半导体内部产生光电压。

什么叫做内光电效应

3,内光电效应的半导体的内光电效应

半导体材料的价带与导带间有一个带隙,其能量间隔为Eg。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体材料的导电性远不如导体。但如果通过某种方式给价带中的电子提供能量,就可以将其激发到导带中,形成载流子,增加导电性。光照就是一种激励方式。当入射光的能量hν≥Eg (Eg为带隙间隔)时,价带中的电子就会吸收光子的能量,跃迁到导带,而在价带中留下一个空穴,形成一对可以导电的电子——空穴对。这里的电子并未逸出形成光电子,但显然存在着由于光照而产生的电效应。因此,这种光电效应就是一种内光电效应。从理论和实验结果分析,要使价带中的电子跃迁到导带,也存在一个入射光的极限能量,即E入=hν0=Eg,其中ν0是低频限(即极限频率ν0=Egh)。这个关系也可以用长波限表示,即λ0=hcEg。入射光的频率大于ν0或波长小于λ0时,才会发生电子的带间跃迁。
金属的光电效应产生的原因是电子在光照下逸出,产生电位差,而半导体的光电效应产生的原因是由于光照下驱动半导体内的空穴移动,从而产生电流

内光电效应的半导体的内光电效应

4,内光电效应的两种类型及特征

内光电效应分为光电导效应和光生伏特效应两类: (1) 光电导效应 在光线作用,电子吸收光子能量从键合状态过渡到自由状态,而引起材料电导率的变化,这种现象被称为光电导效应。基于这种效应的光电器件有光敏电阻。过程:当光照射到半导体材料上时,价带中的电子受到能量大于或等于禁带宽度的光子轰击,并使其由价带越过禁带跃入导带,如图,使材料中导带内的电子和价带内的空穴浓度增加,从而使电导率变大。(2) 光生伏特效应 在光线作用下能够使物体产生一定方向的电动势的现象叫做光生伏特效应。 基于该效应的光电器件有光电池和光敏二极管、三极管。 ①势垒效应(结光电效应)。 接触的半导体和PN结中,当光线照射其接触区域时,便引起光电动势,这就是结光电效应。以PN结为例,光线照射PN结时,设光子能量大于禁带宽度Eg,使价带中的电子跃迁到导带,而产生电子空穴对,在阻挡层内电场的作用下,被光激发的电子移向N区外侧,被光激发的空穴移向P区外侧,从而使P区带正电,N区带负电,形成光电动势。 ②侧向光电效应。 当半导体光电器件受光照不均匀时,有载流子浓度梯度将会产生侧向光电效应。当光照部分吸收入射光子的能量产生电子空穴对时,光照部分载流子浓度比未受光照部分的载流子浓度大,就出现了载流子浓度梯度,因而载流子就要扩散。如果电子迁移率比空穴大,那么空穴的扩散不明显,则电子向未被光照部分扩散,就造成光照射的部分带正电,未被光照射部分带负电,光照部分与未被光照部分产生光电动势。基于该效应的光电器件如半导体光电位置敏感器件(PSD)。
你好。就让我们按照以下流程来认识这张有关光电效应的图片吧。(1)首先我们来认识一下图中的各个元件及其特性。①直流电源、微安计、电压表、滑动变阻器想必你已十分熟悉。②k与a分别是密封在真空玻璃管中的阴极与阳极。k在收到光照时能够发射光电子,从而在微安表、电压表回路中形成光电流。(2)其次我们来认识一下电路的连接特点。①k、a电极组成一组类似于平行板电容器的结构,无光照时相当于开路。②微安计并没有接在直流电源的电路中,它显示的完全就是光电流的大小。③电压表的示数即为加在真空管两端的电压,其大小可由滑动变阻器调控。(3)接下来我们再来认识一下光电效应的几个特点。(这里多处参考了人教版《物理选修3-5》,与图的关系也许并不是太大,但有助于你对光电效应的理解)①存在饱和电流。当光照条件一定时,随着所加电压的增大,光电流趋近于一个饱和值。也就是说,在电流较小时电流随电压增大,但当电流增加到一定值之后,即使电压再增加,电流也不增加了。②存在遏止电压。当所加电压为0时,光电流并不为0,只有当施加一个反向电压时,电流才可能为0。③存在截止频率。当入射光的频率小到某一值时,即使不施加反向电压也没有光电流了,无论入射光多强。至于光电效应的解释,如果你有兴趣,我们可以单独聊。可以加我。by冻结的火

5,内外光电效应的区别

1.外光电效应指在光的照射下,材料中的电子逸出表面的现象。 光电管 及 光电倍增管 均属这一类。它们的光电发射极,即光明极就是用具有这种特性的 材料制造 的。2.内光电效应指在光的照射下,材料的电阻率发生改变的现象。光敏电阻即属此类。光电效应光照射到某些物质上 , 引起物质的电性质发生变化 , 这类光致电变的现象统称为光电 效应。 光电效应一般分为外光电效应和内光电效应。 内光电效应是被光激发所产生的载流子 (自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象。 外光电效应是被光激发产生的电子逸出物质表面,形成真空中的电子的现象。一、 外光电效应在光线的作用下, 物体内的电子逸出物体表面向外发射的现象称为外 光电效应。 向外发射的电子叫做光电子。 基于外光电效应的光电器件有光电管、 光电倍增管 等。光子是具有能量的粒子,每个光子的能量:E=hvh— 普朗克常数, 6.626×10-34J·s ; ν— 光的频率(s -1)根据爱因斯坦假设,一个电子只能接受一个光子的能量,所以要使一个电 子从物体表面逸出, 必须使光子的能量大于该物体的表面逸出功, 超过部分的能量表现为逸 出电子的动能。 外光电效应多发生于金属和金属氧化物, 从光开始照射至金属释放电子所需 时间不超过 10-9s 。根据能量守恒定理E=hv-W该方程称为爱因斯坦光电效应方程。二、 内光电效应当光照在物体上, 使物体的电导率发生变化, 或产生光生电动势的 现象。分为光电导效应和光生伏特效应(光伏效应) 。1 光电导效应在光线作用下, 电子吸收光子能量从键合状态过度到自由状态, 而引 起材料电导率的变化。 当光照射到光电导体上时, 若这个光电导体为本征半导体材料, 且光 辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大。 基于这种效应的光电器件有光敏电阻。2 光生伏特效应在光作用下能使物体产生一定方向电动势的现象。 基于该效应的 器件有光电池和光敏二极管、三极管。① 垒效应(结光电效应)光照射 PN 结时,若 hf ≧ Eg ,使价带中的电子跃迁到导 带,而产生电子空穴对,在阻挡层内电场的作用下,电子偏向 N 区外侧,空穴 偏向 P 区外侧,使 P 区带正电, N 区带负电,形成光生电动势。② 侧向光电效应(丹培效应)当半导体光电器件受光照不均匀时,光照部分产生 电子空穴对,载流子浓度比未受光照部分的大,出现了载流子浓度梯度,引起 载流子扩散,如果电子比空穴扩散得快,导致光照部分带正电,未照部分带负 电,从而产生电动势,即为侧向光电效应。③ 光电磁效应半导体受强光照射并在光照垂直方向外加磁场时, 垂直于光和磁场 的半导体两端面之间产生电势的现象称为光电磁效应, 可视之为光扩散电流的 霍尔效应。④贝克勒耳效应是指液体中的光生伏特效应。当光照射浸在电解液 中的两个同样电极中的一个电极时, 在两个电极间产生电势的现象称为贝克勒 耳效应。感光电池的工作原理基于此效应。
1.外光电效应指在光的照射下,材料中的电子逸出表面的现象。光电管及光电倍增管均属这一类。它们的光电发射极,即光明极就是用具有这种特性的材料制造的。 2.内光电效应指在光的照射下,材料的电阻率发生改变的现象。光敏电阻即属此类。
内外光电效应是光电效应的一种,主要由于光量子作用,引发物质电化学性质变化。 外光电效应是指物质吸收光子并激发出自由电子的行为 仅供参考 欢迎采纳 希望帮到你
在光的作用下,物体内的电子逸出物体表面,向外发射的现象叫外光电效应。 当光照射到物体上,使物体的电阻率发生变化或者产生光生电动势的现象叫内光电效应。内光电效应包括:光电导效应、光生伏特效应。

6,什么是光电效应啊

光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。光照射到金属上,引起物质的电性质发生变化。这类光变致电的现象被人们统称为光电效应(Photoelectric effect)。光电效应分为光电子发射、光电导效应和阻挡层光电效应,又称光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。按照粒子说,光是由一份一份不连续的光子组成,当某一光子照射到对光灵敏的金属(如硒)上时,它的能量可以被该金属中的某个电子全部吸收。电子吸收光子的能量后,动能立刻增加;如果动能增大到足以克服原子核对它的引力,就能在十亿分之一秒时间内飞逸出金属表面,成为光电子,形成光电流。单位时间内,入射光子的数量愈大,飞逸出的光电子就愈多,光电流也就愈强,这种由光能变成电能自动放电的现象,就叫光电效应。赫兹于1887年发现光电效应,爱因斯坦第一个成功的解释了光电效应(金属表面在光辐照作用下发射电子的效应,发射出来的电子叫做光电子)。光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的波长而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,电子的产生都几乎是瞬时的,不超过十的负九次方秒。正确的解释是光必定是由与波长有关的严格规定的能量单位(即光子或光量子)所组成。光电效应里电子的射出方向不是完全定向的,只是大部分都垂光电效应直于金属表面射出,与光照方向无关。光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。光电效应说明了光具有粒子性。相对应的,光具有波动性最典型的例子就是光的干涉和衍射。只要光的频率超过某一极限频率,受光照射的金属表面立即就会逸出光电子,发生光电效应。当在金属外面加一个闭合电路,加上正向电源,这些逸出的光电子全部到达阳极便形成所谓的光电流。在入射光一定时,增大光电管两极的正向电压,提高光电子的动能,光电流会随之增大。但光电流不会无限增大,要受到光电子数量的约束,有一个最大值,这个值就是饱和电流。所以,当入射光强度增大时,根据光子假设,入射光的强度(即单位时间内通过单位垂直面积的光能)决定于单位时间里通过单位垂直面积的光子数,单位时间里通过金属表面的光子数也就增多,于是,光子与金属中的电子碰撞次数也增多,因而单位时间里从金属表面逸出的光电子也增多,电流也随之增大。
光照射到某些物质上,引起物质的电性质发生变化。这类光致电变的现象被人们统称为光电效应(photoelectric effect)。  光电效应分为光电子发射、光电导效应和光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。  赫兹于1887年发现光电效应,爱因斯坦第一个成功的解释了光电效应。金属表面在光辐照作用下发射电子的效应,发射出来的电子叫做光电子。光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的波长而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,不超过十的负九次方秒。正确的解释是光必定是由与波长有关的严格规定的能量单位(即光子或光量子)所组成。  光电效应里,电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关 ,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响.

文章TAG:内光电效应  光电  光电效应  效应  内光电效应  
下一篇