mosfet裸片,如何减少电源损耗实现电源效率最大化
来源:整理 编辑:智能门户 2023-08-26 00:31:19
本文目录一览
1,如何减少电源损耗实现电源效率最大化
这种优化可产生一个有趣的结果。当输出电流等于如下表达式时,效率将会最大化。需要注意的第一件事是,a1 项对效率达到最大时的电流不产生影响。这是由于它与损耗相关,而上述损耗又与诸如二极管结点的输出电流成比例关系。因此,当输出电流增加时,上述损耗和输出功率也会随之增加,并且对效率没有影响。需要注意的第二件事是,最佳效率出现在固定损耗和传导损耗相等的某个点上。这就是说,只要控制设置 a0 和 a2 值的组件,便能够获得最佳效率。还是要努力减小 a1 的值,并提高效率。控制该项所得结果对所有负载电流而言均相同,因此如其他项一样没有出现最佳效率。a1 项的目标是在控制成本的同时达到最小化。表 1 概括总结了各种电源损耗项及其相关损耗系数,该表提供了一些最佳化电源效率方面的折中方法。例如,功率 MOSFET 导通电阻的选择会影响其栅极驱动要求及 Coss 损耗和潜在的缓冲器损耗。低导通电阻意味着,栅极驱动、Coss 和缓冲器损耗逆向增加。因此,您可通过选择 MOSFET 来控制 a0 和 a2。压;它们还包含两组低压差线性稳压器(LDO),负责提供电源给锁相回路 (PLL) 和SRAM或处理器的其它功能模块。这些器件还有许多功能未列在表中,例如后备电池支持、I2C界面和重置功能。 表 1 损耗系数及相应的电源损耗损耗系数举例a0偏压损耗 Coss 损耗 内核损耗 缓冲器损耗 栅极驱动损耗 a1二级管结点损耗 开关损耗 逆向恢复损耗 SR 停滞时间损耗 a2FFT 电阻损耗 绕组损耗 漏电感损耗 蚀刻损耗 电容器纹波 | 损耗 电流感应损耗 代数式下一位将最佳电流代回到效率方程式中,解得最大效率为:需要最小化该表达式中的最后两项,以最佳化效率。a1 项很简单,只需对其最小化即可。末尾项能够实现部分优化。如果假设 MOSFET 的 Coss 和栅极驱动功率与其面积相关,同时其导通电阻与面积成反比,则可以为它选择最佳面积(和电阻)。图 1 显示了裸片面积的优化结果。裸片面积较小时,MOSFET 的导通电阻变为效率限制器。随着裸片面积增加,驱动和 Coss 损耗也随之增加,并且在某一点上变为主要损耗组件。这种最小值相对宽泛,从而让设计人员可以灵活控制已实现低损耗的 MOSFET 成本。当驱动损耗等于传导损耗时达到最低损耗。
2,开关电源中选用mos管时要注意哪些参数
在oring fet应用中,mos管的作用是开关器件,但是由于服务器类应用中电源不间断工作,这个开关实际上始终处于导通状态。其开关功能只发挥在启动和关断,以及电源出现故障之时 。 相比从事以开关为核心应用的设计人员,oring fet应用设计人员显然必需关注mos管的不同特性。以服务器为例,在正常工作期间,mos管只相当于一个导体。因此,oring fet应用设计人员最关心的是最小传导损耗。 低rds(on) 可把bom及pcb尺寸降至最小 一般而言,mos管制造商采用rds(on) 参数来定义导通阻抗;对oring fet应用来说,rds(on) 也是最重要的器件特性。数据手册定义rds(on) 与栅极 (或驱动) 电压 vgs 以及流经开关的电流有关,但对于充分的栅极驱动,rds(on) 是一个相对静态参数。 若设计人员试图开发尺寸最小、成本最低的电源,低导通阻抗更是加倍的重要。在电源设计中,每个电源常常需要多个oring mos管并行工作,需要多个器件来把电流传送给负载。在许多情况下,设计人员必须并联mos管,以有效降低rds(on)。 需谨记,在 dc 电路中,并联电阻性负载的等效阻抗小于每个负载单独的阻抗值。比如,两个并联的2ω 电阻相当于一个1ω的电阻 。因此,一般来说,一个低rds(on) 值的mos管,具备大额定电流,就可以让设计人员把电源中所用mos管的数目减至最少。 除了rds(on)之外,在mos管的选择过程中还有几个mos管参数也对电源设计人员非常重要。许多情况下,设计人员应该密切关注数据手册上的安全工作区(soa)曲线,该曲线同时描述了漏极电流和漏源电压的关系。基本上,soa定义了mosfet能够安全工作的电源电压和电流。在oring fet应用中,首要问题是:在"完全导通状态"下fet的电流传送能力。实际上无需soa曲线也可以获得漏极电流值。 若设计是实现热插拔功能,soa曲线也许更能发挥作用。在这种情况下,mos管需要部分导通工作。soa曲线定义了不同脉冲期间的电流和电压限值。 注意刚刚提到的额定电流,这也是值得考虑的热参数,因为始终导通的mos管很容易发热。另外,日渐升高的结温也会导致rds(on)的增加。mos管数据手册规定了热阻抗参数,其定义为mos管封装的半导体结散热能力。rθjc的最简单的定义是结到管壳的热阻抗。细言之,在实际测量中其代表从器件结(对于一个垂直mos管,即裸片的上表面附近)到封装外表面的热阻抗,在数据手册中有描述。若采用powerqfn封装,管壳定义为这个大漏极片的中心。因此,rθjc 定义了裸片与封装系统的热效应。rθja 定义了从裸片表面到周围环境的热阻抗,而且一般通过一个脚注来标明与pcb设计的关系,包括镀铜的层数和厚度。
3,MOS管选择注重的参数有哪几项
1、负载电流IL ——它直接决定于MOSFET的输出能力;2、输入—输出电压——它受MOSFET负载占空比能力限制;3、开关频率FS——参数影响MOSFET开关瞬间的耗散功率;4、 MOS管最大允许工作温度——这要满足系统指定的可靠性目标。在oring fet应用中,mos管的作用是开关器件,但是由于服务器类应用中电源不间断工作,这个开关实际上始终处于导通状态。其开关功能只发挥在启动和关断,以及电源出现故障之时 。 相比从事以开关为核心应用的设计人员,oring fet应用设计人员显然必需关注mos管的不同特性。以服务器为例,在正常工作期间,mos管只相当于一个导体。因此,oring fet应用设计人员最关心的是最小传导损耗。 低rds(on) 可把bom及pcb尺寸降至最小 一般而言,mos管制造商采用rds(on) 参数来定义导通阻抗;对oring fet应用来说,rds(on) 也是最重要的器件特性。数据手册定义rds(on) 与栅极 (或驱动) 电压 vgs 以及流经开关的电流有关,但对于充分的栅极驱动,rds(on) 是一个相对静态参数。 若设计人员试图开发尺寸最小、成本最低的电源,低导通阻抗更是加倍的重要。在电源设计中,每个电源常常需要多个oring mos管并行工作,需要多个器件来把电流传送给负载。在许多情况下,设计人员必须并联mos管,以有效降低rds(on)。 需谨记,在 dc 电路中,并联电阻性负载的等效阻抗小于每个负载单独的阻抗值。比如,两个并联的2ω 电阻相当于一个1ω的电阻 。因此,一般来说,一个低rds(on) 值的mos管,具备大额定电流,就可以让设计人员把电源中所用mos管的数目减至最少。 除了rds(on)之外,在mos管的选择过程中还有几个mos管参数也对电源设计人员非常重要。许多情况下,设计人员应该密切关注数据手册上的安全工作区(soa)曲线,该曲线同时描述了漏极电流和漏源电压的关系。基本上,soa定义了mosfet能够安全工作的电源电压和电流。在oring fet应用中,首要问题是:在"完全导通状态"下fet的电流传送能力。实际上无需soa曲线也可以获得漏极电流值。 若设计是实现热插拔功能,soa曲线也许更能发挥作用。在这种情况下,mos管需要部分导通工作。soa曲线定义了不同脉冲期间的电流和电压限值。 注意刚刚提到的额定电流,这也是值得考虑的热参数,因为始终导通的mos管很容易发热。另外,日渐升高的结温也会导致rds(on)的增加。mos管数据手册规定了热阻抗参数,其定义为mos管封装的半导体结散热能力。rθjc的最简单的定义是结到管壳的热阻抗。细言之,在实际测量中其代表从器件结(对于一个垂直mos管,即裸片的上表面附近)到封装外表面的热阻抗,在数据手册中有描述。若采用powerqfn封装,管壳定义为这个大漏极片的中心。因此,rθjc 定义了裸片与封装系统的热效应。rθja 定义了从裸片表面到周围环境的热阻抗,而且一般通过一个脚注来标明与pcb设计的关系,包括镀铜的层数和厚度。
4,如何为电源选择正确的工作频率
中心议题:探讨为电源选择正确的工作频率的方法解决方案:更高的工作频率可缩小电感体积使用更低的电容值或更少的电容 为您的电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低。其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。图1 显示的是降压电源频率与体积的关系。频率为 100 kHz 时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积($区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。此主题相关图片如下:图1 :电源组件体积主要由半导体占据。 图1 :电源组件体积主要由半导体占据。 该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与 MOSFET 的裸片面积成反比关系。MOSFET 面积越大,其电阻和传导损耗就越低。开关损耗与 MOSFET 开关的速度以及 MOSFET 具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图 2 显示了两种不同工作频率 (F) 的关系。传导损耗 (Pcon)与工作频率无关,而开关损耗 (Psw F1 和 Psw F2) 与工作频率成正比例关系。因此更高的工作频率 (Psw F2) 会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。 但是,在更高的工作频率下,最佳裸片面积较小,从而带来成本节约。实际上,在低频率下,通过调整裸片面积来最小化损耗会带来极高成本的设计。但是,转到更高工作频率后,我们就可以优化裸片面积来降低损耗,从而缩小电源的半导体体积。这样做的缺点是,如果我们不改进半导体技术,那么电源效率将会降低.此主题相关图片如下:图2 :提高工作频率会导致更高的总体损耗。 图2 :提高工作频率会导致更高的总体损耗。 如前所述,更高的工作频率可缩小电感体积;所需的内层芯板会减少。更高频率还可降低对于输出电容的要求。有了陶瓷电容,我们就可以使用更低的电容值或更少的电容。这有助于缩小半导体裸片面积,进而降低成本。
5,开关电源上面的MOS管要怎么选择要注意哪些参数有什么好的方
在ORing FET应用中,MOS管的作用是开关器件,但是由于服务器类应用中电源不间断工作,这个开关实际上始终处于导通状态。其开关功能只发挥在启动和关断,以及电源出现故障之时 。 相比从事以开关为核心应用的设计人员,ORing FET应用设计人员显然必需关注MOS管的不同特性。以服务器为例,在正常工作期间,MOS管只相当于一个导体。因此,ORing FET应用设计人员最关心的是最小传导损耗。 低RDS(ON) 可把BOM及PCB尺寸降至最小 一般而言,MOS管制造商采用RDS(ON) 参数来定义导通阻抗;对ORing FET应用来说,RDS(ON) 也是最重要的器件特性。数据手册定义RDS(ON) 与栅极 (或驱动) 电压 VGS 以及流经开关的电流有关,但对于充分的栅极驱动,RDS(ON) 是一个相对静态参数。 若设计人员试图开发尺寸最小、成本最低的电源,低导通阻抗更是加倍的重要。在电源设计中,每个电源常常需要多个ORing MOS管并行工作,需要多个器件来把电流传送给负载。在许多情况下,设计人员必须并联MOS管,以有效降低RDS(ON)。 需谨记,在 DC 电路中,并联电阻性负载的等效阻抗小于每个负载单独的阻抗值。比如,两个并联的2Ω 电阻相当于一个1Ω的电阻 。因此,一般来说,一个低RDS(ON) 值的MOS管,具备大额定电流,就可以让设计人员把电源中所用MOS管的数目减至最少。 除了RDS(ON)之外,在MOS管的选择过程中还有几个MOS管参数也对电源设计人员非常重要。许多情况下,设计人员应该密切关注数据手册上的安全工作区(SOA)曲线,该曲线同时描述了漏极电流和漏源电压的关系。基本上,SOA定义了MOSFET能够安全工作的电源电压和电流。在ORing FET应用中,首要问题是:在"完全导通状态"下FET的电流传送能力。实际上无需SOA曲线也可以获得漏极电流值。 若设计是实现热插拔功能,SOA曲线也许更能发挥作用。在这种情况下,MOS管需要部分导通工作。SOA曲线定义了不同脉冲期间的电流和电压限值。 注意刚刚提到的额定电流,这也是值得考虑的热参数,因为始终导通的MOS管很容易发热。另外,日渐升高的结温也会导致RDS(ON)的增加。MOS管数据手册规定了热阻抗参数,其定义为MOS管封装的半导体结散热能力。RθJC的最简单的定义是结到管壳的热阻抗。细言之,在实际测量中其代表从器件结(对于一个垂直MOS管,即裸片的上表面附近)到封装外表面的热阻抗,在数据手册中有描述。若采用PowerQFN封装,管壳定义为这个大漏极片的中心。因此,RθJC 定义了裸片与封装系统的热效应。RθJA 定义了从裸片表面到周围环境的热阻抗,而且一般通过一个脚注来标明与PCB设计的关系,包括镀铜的层数和厚度。mos管驱动上有个台阶是因为mos管内的结电容引起的。这个就是所谓的开通损耗。这个问题都是mos管本身的问题。要想驱动波形没有台阶,几乎是不可能的。求采纳为满意回答。我司是做MOS管的原厂,开关电源这一块,做的很成熟,希望我能帮到你。 请问您需要什么参数?根据三种不同的拓补来接。三种拓补是开关电源的基本,如果不了解那就不用玩开关电源了。开关管要注意的是频率,额定电压和额定电流。
6,我应该如何开始电路设计的工作
很多初学者对于学习硬件电路不知如何下手,其实“硬件电路”这个东西是由一部分一部分的“单元模块电路”组成的,所谓的“单元模块电路”包括:各种稳压电源电路(像LM7805、LM2940、LM2576等)、运算放大器电路(LM324、LM358等)、比较器电路(LM339)、单片机最小系统、H桥电机驱动电路(MC33886、L298等)、RC/LC滤波、场效应管/三极管组成的电子开关等等。 现在不要以为电阻电容是最基础的,“单元模块电路”才是最基础的东西,只有“单元模块电路”才能实现最基础的功能:稳压、信号处理、驱动负载等。 把整块电路分成好几部分,学习起来就会容易很多了,今天看懂稳压电源,明天看懂运算放大器……一个星期就能看懂一般的电路图了,主要在于逐个领悟、各个击破。单元电路百度图片有的是,没事多查查多问问。 光能看懂电路图也是不够的,还要有动手能力。 1、先能照着“单元模块电路图”在面包板上搭建电路,使之能正常工作(看懂元器件PDF资料,了解元器件引脚排布和各个电气参数); 2、紧接着能在万能电路板(洞洞板)上焊接一块电路,可以由几部分单元电路组成的那种(这里“布线”一定要多学学!对往下学很有用); 3、在此基础上学习Protel等电路设计软件,能设计一整块的电路板PCB。 学习电路一定要循序渐进,边理论边实践。本文将就开关电源设计中如何正确的选择工作频率分享设计技巧。 为您的电源选择正确的工作频率 为您的电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。 我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低;其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。 图1.1显示的是降压电源频率与体积的关系。频率为100khz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。 该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与mosfet的裸片面积成反比关系。mosfet面积越大,其电阻和传导损耗就越低。 开关损耗与mosfet开关的速度以及mosfet具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图1.2显示了两种不同工作频率(f)的关系。传导损耗(pcon)与工作频率无关,而开关损耗(pswf1和pswf2)与工作频率成正比例关系。因此更高的工作频率(pswf2)会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。 但是,在更高的工作频率下,最佳裸片面积较小,从而带来成本节约。实际上,在低频率下,通过调整裸片面积来最小化损耗会带来极高成本的设计。但是,转到更高工作频率后,我们就可以优化裸片面积来降低损耗,从而缩小电源的半导体体积。这样做的缺点是:如果我们不改进半导体技术,那么电源效率将会降低。 如前所述,更高的工作频率可缩小电感体积,所需的内层芯板会减少。更高频率还可降低对于输出电容的要求。有了陶瓷电容,我们就可以使用更低的电容值或更少的电容。这有助于缩小半导体裸片面积,进而降低成本。电路设计过程:一、明确电路功能需要,设计目的二、确定使用的主要器件,包括电子管晶体管继电器等三、粗略构架电路结构,主要原理和大概布局。四、选择可用及符合要求的器件,如果没有,则需要重复二的步骤。五、构建大概的电路,信号流程分析及部份电路实验六、精确分析电路流程,精确设计各部份电路细节。七、电路测试,包括电源电压波动及信号强度波动的适应范围等。八、针对问题调整细节设计参数九、电路板设计(对超高频电路这一部份也许是最费功夫的了)。十、成品试验测试。器材应该在第五步开始时购买,先便宜后贵。也就是部份电路测试时,先实验器件便宜的电路,万一不行需要修改设计时,损失较小。具体的器件选择可以参考相关的手册,比如半导体器件手册、电子管手册、晶体管手册等。放大100指的是什么?电压还是电流或功率?电路设计以需要为准则,选提出明确的需要才能考虑电路的问题。放大100并不明确,放大的是电压、电流、功率?输入信号的电压、电流、功率、阻抗?及输出负载的大小,都影响对电路形式的选择。还要注意一点,电路的电流放大倍数与晶体管的β并不是一个概念。不要以为β就是电流放大倍数,那只是晶体管的特征参数之一。具体电路的电流放大倍数可能比β高也可能比β低。(当然大多数情况比β低)。你拿起你的模电书,按照上面的例子,随便用S8050/S8550搭一下电路,然后测试,调整。完事~
文章TAG:
mosfet裸片 如何减少电源损耗实现电源效率最大化
大家都在看
-
德国和日本制造自动化,机械设计制造及其自动化:各有所长
2022-12-21
-
苹果手机夏天自动关机,苹果手机自动关机重启原因是什么?
2022-12-23
-
小米5怎么不自动锁屏,小米5如何刷机?
2023-01-02
-
米5关了自动亮度,手机亮度无法调整小米平板5自动亮度
2023-01-09
-
qq农场自动偷菜软件,点击鼠标右键农场免费领取方式
2023-01-10
-
大疆御自动连拍,大疆御mavic2自动对焦模式支持三种模式
2023-02-10
-
三星s7取消自动关闭,电脑出现病例怎么办?教你如何正确操作
2023-02-19
-
华为荣耀自动清理内存,华为荣耀8怎么清理内存?
2023-03-02
-
电脑经常自动重启的原因,电脑自动重启频繁是什么原因?
2023-03-29
-
立林科技智能终端机是什么,智能终端是什么中央处理机是什么计算机体系结构是什么
2023-03-30
-
智能黑科技公司在哪里,黑科技在哪里
2023-04-07
-
工业过程自动化专业,工业过程自动化技术这个专业麻烦通俗的讲一下他与我们生活有
2023-04-18
-
乐视视频怎么关会员自动续费,如何进入乐视官网?
2023-04-19
-
医疗科技智能化专业学什么,求助本科专业的智能科学与技术都学什么
2023-04-21
-
金眼智能科技怎么样,张家口金垣智能科技有限公司待遇如何
2023-04-22