本文目录一览

1,求助关于曲率的概念

其实是这样的,曲线在每一点上都可以定义出一条近似圆弧的半径,这个半径的倒数就是曲率了.所以曲率越大对应的半径越小,也就是说这个地方拐弯越厉害.
1)定义:曲率=1/r; 2)直线曲率=0(因为半径无穷大); 3)园曲率=一个常数(1/r); 4)曲率是可以不断变化的; 5)几何可以包含拐点,在此处曲率会由曲面的一侧转换到另一侧
谢谢兄弟!不过是英文的看不懂,有中文的就更好了

求助关于曲率的概念

2,什么是曲率

曲率的定义 设曲线是光滑的(即曲线上的每一点都有切线,且切线随切点的移动而连续的转 动),(如图所示)在上取定一点作为度量弧长的基点,在曲线上任取一点,弧段的长度为,当动点沿曲线移动到时,切线转过的角度为,称比值为弧段的平均曲率,记为,即 .当时,平均曲率的极限为曲线在点处的曲率,记为,即 如果存在,则也可表示为 注: 直线上任一点的切线与直线本身重合,切线转角,所以直线任一点的曲率皆为零。半径为的圆上任一点的曲率皆为,即半径的倒数。这就是说,圆的弯曲程度到处一样,且半径越小,弯曲得越厉害。

什么是曲率

3,曲率的定义

曲线的曲率(curvature)就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大。
曲线的曲率(curvature)就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。
曲率:就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。

曲率的定义

4,什么叫曲率

曲率 平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。 K=lim|Δα/Δs|,Δs趋向于0的时候,定义K就是曲率。 曲率的倒数就是曲率半径。
曲率半径主要是用来描述曲线上某处曲线弯曲变化的程度 一个圆上任一圆弧的曲率半径恰好等於圆的半径 一个圆上任一圆弧的曲率半径恰好等于圆的半径 对於任意曲线曲线上取其上的一小段曲线 对于任意曲线曲线上取其上的一小段曲线 恰好会和某特殊圆的一小段圆弧重叠 恰好会和某特殊圆的一小段圆弧重叠 於是说曲线在该处的曲率半径为所重合圆的半径 于是说曲线在该处的曲率半径为所重合圆的半径 但是一旦移动位置各处的曲率半径不见得相同 但是一旦移动位置各处的曲率半径不见得相同 曲率半径主要是用来描述曲线上某处 曲线弯曲变化的程度 特殊的如:一个圆上任一圆弧的曲率半径恰好等於圆的半径

5,什么是曲率

表示曲线弯曲程度的量.   平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。曲率越大,表示曲线的弯曲程度越大。   K=lim|Δα/Δs|,Δs趋向于0的时候,定义K就是曲率。   曲率的倒数就是曲率半径。   圆弧的曲率半径,就是以这段圆弧为一个圆的一部分时,所成的圆的半径。 曲率半径越大,圆弧越平缓,曲率半径越小,圆弧越陡。曲率半径的倒数就是曲率。曲率 k = (转过的角度/对应的弧长)。当 角度和弧长同时趋近于0时,就是关于任意形状的光滑曲线的曲率的标准定义。而对于圆,曲率不随位置变化。    在动力学中,一般的,一个物体相对于另一个物体做变速运动时便会产生曲率。这是由于时空扭曲造成的。结合广义相对论的等效原理,变速运动的物体可以看成处于引力场当中,因而产生曲率。
应该是曲线的离心率吧。
简单来说就是圆周半径的倒数。

6,什么叫曲率

曲率的概念及计算公式 概念 来源:为了平衡曲线的弯曲程度。 平均曲率,这个定义描述了AB曲线上的平均弯曲程度。其中表示曲线段AB上切线变化的角度,为AB弧长。 例:对于圆,。所以:圆周的曲率为,是常数。 而直线上,所以,即直线“不弯曲”。 对于一个点,如A点,为精确刻画此点处曲线的弯曲程度,可令,即定义,为了方便使用,一般令曲率为正数,即:。 计算公式的推导: 由于,所以要推导与ds的表示法,ds称为曲线弧长的微分(T5-28,P218) 因为,所以。 令,同时用代替得 所以或 具体表示; 1、时, 2、时, 3、时,(令) 再推导,因为,所以,两边对x求导,得,推出。 下面将与ds代入公式中: ,即为曲率的计算公式。 曲率半径: 一般称为曲线在某一点的曲率半径。 几何意义(T5-29)如图为在该点做曲线的法线(在凹的一侧),在法线上取圆心,以ρ为半径做圆,则此圆称为该点处的曲率圆。曲率圆与该点有相同的曲率,切线及一阶、两阶稻树。 应用举例:求上任一点的曲率及曲率半径(T5-30)
曲率 平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。 K=lim|Δα/Δs|,Δs趋向于0的时候,定义K就是曲率。 曲率的倒数就是曲率半径。

文章TAG:曲率  求助关于曲率的概念  
下一篇