本文目录一览

1,正负12v直流稳压电源设计

你可以到电子发烧友网里看看,里面有很多电路图。

正负12v直流稳压电源设计

2,想学习电源电路设计需要学习那些知识

想学电源电路的设计,模拟电路是少不了的,数字电路也需要会点,同时你应该会电路板的绘制,软件编程等电子方面的知识,反正电子这玩意学的东西比较杂,用的时候需要了再查有觉得不可行,先学了不一定用到,知识多了并非坏事我感觉不一定适用于此,你自己定夺一下

想学习电源电路设计需要学习那些知识

3,设计一个电源转换电路要求输入交流电压为22V要得到正负12V稳

不要用78系列、79系列或LM317、LM337系列线性稳压器,因为22V交流电压整流滤波后的电压有近30V,用线性稳压器效率低、发热大,ASM1117更不能用,它的最高输入电压只有15V! 应该用开关稳压器如LM2576-012、LM2576-33、CS5173、CS5174等。 LM2576和CS5174的实用电路连接如下图——

设计一个电源转换电路要求输入交流电压为22V要得到正负12V稳

4,关于外置便携电源的电路设计

这个是不可以的,手机电池有充放电保护电路,你直接连接两块或者多块电池的话,有危险的,还有就是会导致电池保护,没有电压输出,唯一的办法就是把上面的电路板拆掉不用,直接把两块电压一样的电池+ -连一起并联。这样可以加大电池的容量。串的话。用不到,你两块电池串起来电压会太高的,烧挂了MP5就麻烦了,记住,只能用一块电池的充放电保护电路。也就是说一块充放电保护电路可以接2块3块或者4块电池并联的。电池的电压要一致,大概是3.7V 电流的话,你只要不会接错,没有短路是不会有问题的,可以延长续航的时间,不过挂外面的话,绝缘要作好,理电池可不是闹着玩的,那玩意会炸的,
如果电压是正常的,就要注意电流了,电池本来就是直流的,不需要整流电路,你要考虑加个电阻降电流

5,24v输入060v输出开关电源设计请问大家有什么好的方案或者建议吗

有个概念问题:24v输入0-60v输出包括了二个电源呀,24v以下是降压,以上是升压,这个貌似用一个电源解决不了的吧?如一定要用一个(不用二次操作,一个电位器全部控制为准),那么只能先升压到60v,再接一个0-60v的可调降压开关电源了.这好象有点得不偿失,多此一举的感觉.
1引言 对现代电子系统,即便是最简单的由单片机和单一i/o接口电路所组成的电子系统来讲,其电源电压一般也要由+5v,±15v或±12v等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3v,+5v,±15v,±12v,-5v,±9v,+18v,+24v、+27v、±60v、+135v、+300v、-200v、+600v、+1800v、+3000v、+5000v(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。 从图1可以看到,真正形成闭环控制的只有主电路vp,其它vaux1、vaux2等辅电路都处在失控之中。从控制理论可知,只有vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说vp在很大程度上只取决于基准电压和采样比例。对vaux1、vaux2而言,其精度主要依赖以下几个方面: 1)t1主变器的匝比,这里主要取决于np1:np2或np1:np3 2)辅助电路的负载情况。 3)主电路的负载情况。 注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。 在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。 2.1电源变换器多路输出交叉负载调整率测量与计算步骤 1)测试仪表及设备连接如图2所示。 2)调节被测电源变换器的输入电压为标称值,合上开关s1、s2…sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压uj,用同样的方法测量其它各路输出电压。 3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ulj。 4)按式(1)计算第j路的交叉负载调整率sil。 式中:δuj为当其它各路负载电流为最小值时,uj与该路输出电压ulj之差的绝对值; uj为各路输出电流为额定值时,第j路的输出电压。 根据上面的测试及计算方法可以将交叉负载调整率理解为:所有其它输出电路负载跨步变(100%-0%时)对该路输出电压精度影响的百分比。 2.2多路输出开关电源 由图1原理所构成的实际开关电源,主控电路仅反馈主输出电压,其它辅助电路完全放开。此时假设主、辅电路的功率比为1:1。从实际测量得主电路交叉负载调整率优于0.2%,而辅电路的交叉负载调整率大于50%。无论开关电源设计者还是应用者对大于50%的交叉负载调整率都将是不能接受的。如何降低辅电路交叉负载调整率,最直接的想法就是给辅助电路加一个线性稳压调节器(包括三端稳压器,低压差三端稳压器)如图3所示。 从图3可知,由于引入了线性稳压调节器v,所以在辅路上附加了一部分功率损耗,功率损耗为p=而要使辅电路的交叉负载调整率小,就必须有意识地增大线性调整器的电压差,即就是要有意识增大,其带来的缺点就是增加了电源的功率损耗,降低了电源的效率。 以图1及图3原理为基础设计和应用电源时,应注意的原则为: 1)主电路实际使用的电流最小应为最大满输出电流的30%; 2)主电路电压精度应优于0.5%; 3)辅电路功率最好小于主电路功率的50%; 4)辅电路交叉负载调整率不大于10%。 2.3改进型多路输出开关电源 在很多应用场合中,要求2路输出的功率基本相当,比如±12v/0.5a,±15v/1a。我们通过多年的实践,设计了如图4所示的电路,能较好地达到提高交叉负载调整率的目的。 图4电路设计思想的核心有以下2点。 1)将正负2路输出滤波电感l1、l2绕制在同一磁芯上,采用双线并绕的方法,从而保证l1、l2电感量完全相同。并注意实际接入线路时的相位(差模方法)关系,这种滤波电感的连接方法使2路输出电流的变化量相互感应,在一定程度上较大地改善了2路输出的交叉负载调整率。 2)从图4可以看到,采样比较器rs1、rs2不像图1那样接到主电路vp上,而是直接跨接到正负电源的输出端上,并且逻辑“地”不是电源的输出地,而是以负电压输出端作为采样比较和基准电压的逻辑“地”电位。这样采样误差将同时反映出正、负2路输出的电压精度变化,对正、负2路同样都存在有反馈作用,能在很大程度上改进2路输出的交叉负载调整率。以±15v/1a电源为例,采用图4的电路设计,实测得的2路交叉负载调整率优于2%。 以图4原理为基础设计和应用电源时,应注意的原则为: 1)2路最好为对称输出(功率对称,电压对称),无明显的主、辅电路之分,比如我们常用到的±12v,±15v等都属于此类; 2)2路输出电压精度要求都不是太高,1%左右; 3)2路输出交叉调整率要求相对较高,2%左右。 下面介绍一种通用性极强的3路电源设计方案,如图5所示。 从图5可以看到,主+5v输出与辅路±vout(可以是±15v或±12v)输出电路不但反馈相互独立,而且其pwm(脉宽调制器),功率变换和变压器都是相互独立的。可以将此3路电源看成是由相互独立的1个+5v电源和1个±vout电源共同组合而成。为了进一步减少二者之间的相互干扰和降低各自输出电压纹波的峰-峰值,应当进一步减小各独立电源的输入反射纹波(一般纹波峰-峰值应小于50mv,纹波有效值应小于10mv)和采用同步工作方式。 2.4高频磁放大器稳压器 在多路输出电源中,输出电路经常采用高频磁放大稳压器,它以低成本、高效率、高稳压精度和高可靠性,而在多路输出的稳压电源中得到了广泛应用。 磁放大器能使开关电源得到精确的控制,从而提高了其稳定性。磁放大器磁芯可以用坡莫合金,铁氧体或非晶,纳米晶(又称超微晶)材料制作。非晶、纳米晶软磁材料因具有高磁导率,高矩形比和理想的高温稳定性,将其应用于磁放大器中,能提供无与伦比的输出调节精确性,并能取得更高的工作效率,因而倍受青睐。非晶、纳米晶磁芯除上述特点外还具备以下优点: 1)饱和磁导率低; 2)矫顽力低; 3)复原电流小; 4)磁芯损耗少; 磁放大输出稳压器没有采用晶闸管或半导体功率开关管等调压器件,而是在整流管输出端串联了一个可饱和扼流圈(如图6所示),所以它的损耗小。 由图6可知,磁放大稳压器的关键是可控饱和电感lsr和复位电路。可控饱和电感是由具有矩形b?h回线的磁芯及其上的绕组组成,该绕组兼起工作绕组和控制绕组的作用。复位(reset)是指磁通到达饱和后的去磁过程,使磁通或磁密回到起始的工作点,称为磁通复位。由于磁放大稳压器所用的磁芯材料的特点(良好的矩形b?h回线及高的磁导率),使得磁芯未饱和时的可控饱和电感对输入脉冲呈现高阻抗,相当于开路,磁芯饱和时可控饱和电感的阻抗接近于0,相当于短路。 目前开关电源工作频率已提到几百khz以上,磁放大器在开关电源中的广泛应用对软磁材料提出了更高的要求。在如此高的频率下,坡莫合金由于电阻率太低(约60μω?cm)导致涡流损耗太大,造成温升高,效率降低,采用超薄带和极薄带虽能有所改善,但成本将大幅度上升;铁氧体具有很高的电阻率(大于105μω?cm),但其bs过低,居里点也太低。由于工作环境恶劣,对材料的应力敏感性、热稳定性等都有严格要求,上述材料是很难满足要求的。 非晶合金的出现大大丰富了软磁材料。其中的钴基非晶合金具有中等的饱和磁感应强度,超微合金具有较高的饱和磁感应强度,它们都具有极低的饱和磁致伸缩系数和磁晶各向异性。钴基非晶和超微晶在保持高方形比的同时可以具有很低的高频损耗,用于高频磁放大器中,可大大提高电源效率,大幅度减小重量、体积,是理想的高频磁放大器铁芯材料。 3高频磁放大输出稳压器典型应用电路 图7所示的多路输出电源,其主路为闭环反馈pwm控制方式,辅路为磁放大式稳压电源。由于辅路磁放大输入电压波形受控于变压器主、辅绕组比,以及主路的工作状态(主路输出电压的高低和主路负载的高低等),所以辅路的交叉负载调整率仍然不能够达到理想的状态。 图8所示是一种完全利用磁放大器稳压技术设计的多路输出稳压电源。此电源前级为双变压器自激功率变换电路,后级多路输出均为磁放大器稳压电路。并且各路之间无关,前后级之间无反馈,无脉宽调制器(pwm)。 此电路的优点如下: 1)电路结构简单,使用元器件数量少,除了两只功率管以外,其它元器件均是永久性或半永久性的,可靠性极高,制作也很方便; 2)电路中没有隔离反馈放大器,因此调整极其容易,而且一旦调整好后就无须维护,前级变换功率取决于后级总输出功率; 3)各路的输出特性相互独立,独自调整稳压,无主、辅路之分,所以,各输出电路的负载调整率的交叉负载调整率都非常理想,小于0?5%; 4)磁放大器在功率开通瞬间,处于“开路”状态,功率管在此刻的导通电流趋近于零,因而,损耗减到了最低限度,这有利于变换器的高频化和高效率; 5)由于前级功率变换器为不调宽的纯正方波,以及后级接了磁放大器,这样可以大幅度地降低输出纹波的峰-峰值,普通pwm型电源的输出纹波大约为输出电压标称值的1%左右,而采取带磁放大器的整流电路,纹波的峰-峰值可比较容易地降低到0.1%左右。 上述磁放大型稳压电源的综合电特性都是其它pwm隔离负反馈多路电源所无法比似的。尤其对多路电源实际应用来讲,可以对电源内部特性和电子系统的负载特性不予考虑,拿来就能使用,用上就无问题。但是,现代磁放大型稳压电源还存在如下一些问题,有待解决。 1)电路形式需进一步完善(尤其是电源前级功率变换电路),应加入过、欠压保护,过流、短路保护,电源使能端。 2)进一步提高工作频率,以便减小体积。 3)进一步提高效率,减小磁损。 4结语 综合上述,对多路电源应用者而言,可以根据电子系统用电情况,更切实际地提出所用电源的特性参数。对多路电源设计者而言,可以更多更系统地了解现今多路电源设计方法,减少新产品的开发周期,做到事半功倍。

6,题目直流稳压电源设计

原发布者:back2bedlam直流稳压电源设计一、设计目的:1、通过电源变压器是将交流电网220v的电压变为所需要的电压值,然后通过整流电路将交流电压变成脉动的直流电压。2、由于此脉动的直流电压还含有较大的文波,必须通过电路加以滤除,从而得到平滑的直流电压。3、这样的电压还随电网电压波动(一般在正负10%左右的波动),负载和温度的变化而变化。因而在整流,滤波电路之后,还需结稳压电路。稳压电路的作用是当电网电压波动,负载和温度变化时,维持输出直流电压稳定。二、设计要求:1、直流输出电压12V±1V;2、电源输最大直流电流Iomax=200mA;3、交流电网为:220V±10%50Hz;4、误差V<0.1V;TechnologyRequirement:One:theoutputofthedirectcurrentvoltageis12V+-1V;Two:thepowersupplyistopressthebiggestdirectcurrentI0=200mA;Three:theexchangeelectricalnetworkis220V+_10%thefrequencyis50Hz;Four:theerrorisV<0.1V.三、设计方案与论证:直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,见图+电源+整流+滤波+稳压+u1u2u3uIU0_变压器_电路_电路_电路_(a)稳压电路组成方框图
功能介绍 三端稳压集成电路也称三端稳压管,它的样子就像是普通的三极管,电子产品中常见到的三端稳压集成电路有正电压输出的78×× 系列和负电压输出的79×× 系列。顾名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、输出端和接地端。将元件有标识的一面朝向自己,若是78系列,三条引脚分别为输入端、接地端和输出端;若是79系列,三条引脚分别为接地端、输入端和输出端。 用78/79系列三端稳压IC 来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠 、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。有时在数字78或79后面还有一个M或L,如78M12或79L24,这是用来区别输出电流和封装形式等, 其中78L系列最的大输出电流为100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。 它们的封装也有多种,根据元件的安置情况会有所不同。在实际应用中, 应在三端集成稳压电路上安装足够大的散热器 (当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将会变差,甚至损坏。
那啥,这不是我强项。 找了点资料,自己凑合看看吧。希望对你有帮助:直流稳压电源的设计二、设计目的1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。2.学会直流稳压电源的设计方法和性能指标测试方法。3.培养实践技能,提高分析和解决实际问题的能力。三、设计任务及要求1.设计并制作一个连续可调直流稳压电源,主要技术指标要求:① 输出电压可调:Uo=+6V~+13V② 最大输出电流:Iomax=1A③ 输出电压变化量:ΔUo≤15mV④ 稳压系数:SV≤0.0032.设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。3.自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。4.批准后,进实验室进行组装、调试,并测试其主要性能参数。四、设计步骤1.电路图设计(1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。(2)系统分析:根据系统功能,选择各模块所用电路形式。(3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。(4)总电路图:连接各模块电路。2.电路安装、调试(1)为提高学生的动手能力,学生自行设计印刷电路板,并焊接。(2)在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。(3)重点测试稳压电路的稳压系数。(4)将各模块电路连起来,整机调试,并测量该系统的各项指标。五、总体设计思路1.直流稳压电源设计思路(1)电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。2.直流稳压电源原理直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,见图1。图1直流稳压电源方框图其中:(1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。(2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电(3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。(4)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。整流电路常采用二极管单相全波整流电路,电路如图2所示。在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图3所示。在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即 。电路中的每只二极管承受的最大反向电压为 (U2是变压器副边电压有效值)。在设计中,常利用电容器两端的电压不能突变和流过电感器的电流不能突变的特点,将电容器和负载电容并联或电容器与负载电阻串联,以达到使输出波形基本平滑的目的。选择电容滤波电路后,直流输出电压:Uo1=(1.1~1.2)U2,直流输出电流: (I2是变压器副边电流的有效值。),稳压电路可选集成三端稳压器电路。总体原理电路见图4。3.设计方法简介(1)根据设计所要求的性能指标,选择集成三端稳压器。因为要求输出电压可调,所以选择三端可调式集成稳压器。可调式集成稳压器,常见主要有CW317、CW337。317系列稳压器输出连续可调的正电压,337系列稳压器输出连可调的负电压,可调范围为6V~13V,最大输出电流 为1.5A。稳压内部含有过流、过热保护电路,具有安全可靠,性能优良、不易损坏、使用方便等优点。其电压调整率和电流调整率均优于固定式集成稳压构成的可调电压稳压电源。电路系列的引脚功能相同,管脚图和典型电路如图5.图5典型电路输出电压表达式为:式中,1.25是集成稳压块输出端与调整端之间的固有参考电压 ,此电压加于给定电阻 两端,将产生一个恒定电流通过输出电压调节电位器 ,电阻 常取值 , 一般使用精密电位器,与其并联的电容器C可进一步减小输出电压的纹波。图中加入了二极管D,用于防止输出端短路时10μF大电容放电倒灌入三端稳压器而被损坏。输出电压可调范围:1.2V~37V输出负载电流:1.5A输入与输出工作压差ΔU=Ui-Uo:3~40V能满足设计要求,故选用稳压电路。(2)选择电源变压器1)确定副边电压U2:根据性能指标要求:Uomin=3V Uomax=9V又 ∵ Ui-Uomax≥(Ui-Uo)min Ui-Uoin≤(Ui-Uo)max其中:(Ui-Uoin)min=3V,(Ui-Uo)max=40V∴ 12V≤Ui≤43V此范围中可任选 :Ui=14V=Uo1根据 Uo1=(1.1~1.2)U2可得变压的副边电压: 2)确定变压器副边电流I2∵ Io1=Io又副边电流I2=(1.5~2)IO1 取IO=IOmax=800mA则I2=1.5*0.8A=1.2A3)选择变压器的功率变压器的输出功率:Po>I2U2=14.4W(3)选择整流电路中的二极管∵ 变压器的副边电压U2=12V∴ 桥式整流电路中的二极管承受的最高反向电压为: 桥式整流电路中二极管承受的最高平均电流为: 查手册选整流二极管IN4001,其参数为:反向击穿电压UBR=50V>17V最大整流电流IF=1A>0.4A(4)滤波电路中滤波电容的选择滤波电容的大小可用式 求得。1)求ΔUi:根据稳压电路的的稳压系数的定义:设计要求ΔUo≤15mV ,SV≤0.003 Uo=+3V~+9VUi=14V代入上式,则可求得ΔUi2)滤波电容C设定Io=Iomax=0.8A,t=0.01S则可求得C。电路中滤波电容承受的最高电压为 ,所以所选电容器的耐压应大于17V。注意: 因为大容量电解电容有一定的绕制电感分布电感,易引起自激振荡,形成高频干扰,所以稳压器的输入、输出端常 并入瓷介质小容量电容用来抵消电感效应,抑制高频干扰。六、实验设备及元器件1.万用表 2.示波器 3.交流毫伏表 4.三端可调的稳压器七、测试要求1.测试并记录电路中各环节的输出波形。2.测量稳压电源输出电压的调整范围及最大输出电流。3.测量输出电阻Ro。4.测量稳压系数。用改变输入交流电压的方法,模拟Ui的变化,测出对应的输出直流电压的变化,则可算出稳压系数SV. (注意: 用调压器使220V交流改变±10%。即ΔUi=44V)5.用毫伏表可测量输出直流电压中的交流纹波电压大小,并用示波器观察、记录其波形。6.分析测量结果,并讨论提出改进意见。八、设计报告要求1.设计目的。2.设计指标。3.总体设计框图,并说明每个模块所实现的功能。4.功能模块,可有多个方案,并进行方案论证与比较,要有详细的原理说明。5.总电路图设计,有原理说明。6.实现仪器,工具。7.分析测量结果,并讨论提出改进意见。8.总结:遇到的问题和解决办法、体会、意见、建议等。九、注意事项1.焊接时要对各个功能模块电路进行单个测试,需要时可设计一些临时电路用于调试。2.测试电路时,必须要保证焊接正确,才能打开电源,以防元器件烧坏。4. 按照原理图焊接时必须要保证可靠接地。十、此电路的误差分析综合分析可以知道在测试电路的过程中可能带来的误差因素有: ① 测得输出电流时接触点之间的微小电阻造成的误差; ② 电流表内阻串入回路造成的误差; ③ 测得纹波电压时示波器造成的误差; ④ 示波器, 万用表本身的准确度而造成的系统误差;可以通过以下的方法去改进此电路: ① 减小接触点的微小电阻; ② 根据电流表的内阻对测量结果可以进行修正; ③ 测得纹波时示波器采用手动同步; ④ 采用更高精确度的仪器去检测;十一、综合总结通过本次设计,让我们更进一步的了解到直流稳压电源的工作原理以及它的要求和性能指标.也让我们认识到在此次设计电路中所存在的问题;而通过不断的努力去解决这些问题.在解决设计问题的同时自己也在其中有所收获.我们这次设计的这个直流稳压电源电路;采用了电压调整管(uA723)外加调整管(2SC3280)来实现电压的调整部分;还通过单片机(89C51)来实现电路的控制,也实现了扩充多功能;而稳流部分可调式三端稳压电源管来实现。十二、参考文献资料◆<<电子线路基础>>,华东师范大学物理系万嘉若,林康运等编著,高等教育出版社.◆<<电子技术基础>>,华中工学院电子学教研室编,康华光主编,高等教育出版社。◆<<电子线路设计>>,(第二版)华中科技大学谢自美主编,华中科技大学出版社.

文章TAG:电源  电源电路  电路  电路设计  电源电路设计  
下一篇