本文目录一览

1,因为的英文

好多呢。because是有强烈因果关系的词,引导原因状语从句。引申而来的because of 也是同样的用法。for since也可以表示原因,他们表示的原因因果性比较低。其中,since是表示显而易见的原因,多数是常识。for 的程度在两者之间
好多呢。 because是有强烈因果关系的词,引导原因状语从句。 引申而来的because of 也是同样的用法。 for since也可以表示原因,他们表示的原因因果性比较低。 其中,since是表示显而易见的原因,多数是常识。 for 的程度在两者之间

因为的英文

2,霍尔电压是什么

霍尔电压即霍尔效应产生的电压(电势差)。而霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。这个电势差也被叫做霍尔电势差。
霍尔电压的大小是什么
不同霍尔传感器的温度特性不一样,如inas材料的传感器温度升高,输出电压变化平稳,基本是增大的;而insb材料的传感器则恰恰相反,随温度生高,输出电压是降低的。
不同霍尔传感器的温度特性不一样,如inas材料的传感器温度升高,输出电压变化平稳,基本是增大的;而insb材料的传感器则恰恰相反,随温度生高,输出电压是降低的。

霍尔电压是什么

3,磁敏电阻的介绍

磁敏电阻是一种对磁敏感、具有磁阻效应的电阻元件。物质在磁场中电阻发生变化的现象称为磁阻效应。磁敏电阻通常用锑化铟(InSb)或砷化铟(InAs)等对磁具有敏感性的半导体材料制成。半导体材料的磁阻效应包括物理磁阻效应和几何磁阻效应,其中物理磁阻效应又称为磁电阻率效应。当外加磁场的方向或强度发生变化时,磁敏电阻的阻值相应改变[2],利用该变化,可精确地测试出磁场的相对位移。例如,在一个长方形半导体InSb片中,沿长度方向有电流通过时,若在垂直于电流片的宽度方向上施加一个磁场,半导体InSb片长度方向上就会发生电阻率增大的现象。
磁敏电阻:沿长度方向有电流通过时,若在垂直于电流片的宽度方向上施加一个磁场,半导体长度方向上就会发生电阻率增大的现象。一般来说磁敏电阻阻值随附加磁场大小增加而变大。光敏电阻:光敏电阻的制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。所以光敏电阻的阻值随光强增大而减小。热敏电阻:热敏电阻分为正温度系数热敏电阻器和负温度系数热敏电阻器。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低。一般来说第二种热敏电阻比较常见既电阻在温度越高时电阻值越低。因为热敏电阻为半导体,所以表现的性能与金属导体很大差异,根据常识金属导体的电阻随温度变高而增大,而一般热敏电阻和金属导体相反。

磁敏电阻的介绍

4,砷化铟的化学式是什么

中文名称:砷化铟[1]英文名称:indium arsenide英文别名:Indium arsenide; Indiam arsenide; Indium arsenide (InAs); Indium monoarsenide; arsanylidyneindium; arsenic(-3) anion; indium(+3) cation 砷化铟 CAS号:1303-11-3EINECS号:215-115-3分子式:AsIn分子量:189.7396砷化铟是由铟和砷构成的Ⅲ一V族化合物半导体材料。常温呈银灰色固体,具有闪锌矿型的晶体结构,晶格常数为0.6058nm,密度为5.66g/cm(固态)、5.90g/cm(熔点时液态)。能带结构为直接跃迁,禁带宽度(300K)0.45eV。InAs相图如图所示。[2]InAs在熔点(942℃)时砷的离解压只有0.033MPa,可在常压下由熔体生长单晶。常用的有HB和LEC方法,单晶直径达φ50mm。InAs是一种难于纯化的半导体材料。非掺In.As单晶的剩余载流子浓度高于l×10/cm,室温电子迁移率3.3×10cm/(V·s),空穴迁移率460cm/(V·s)。硫在In.As中的有效分凝系数接近1,故用作n型掺杂剂,以提高纵向载流子浓度分布的均匀性。工业用的InAs(s)单晶,n≥1×10/cm3,μ≤2.0×10cm/(V·s),EPD≤5×10/cm。InAs晶体具有较高的电子迁移率和迁移率比值(μe/μh=70),低的磁阻效应和小的电阻温度系数,是制造霍耳器件和磁阻器件的理想材料。InAs的发射波长3.34μm,在InAs衬底上能生长晶格匹配的In—GaAsSb、InAsPSb和InAsSb多元外延材料,可制造2~4μm波段的光纤通信用的激光器和探测器。 望采纳,谢谢

5,硅的带隙能量指的是什么

在半导体和绝缘体, 电子 被限制对一定数量 带 能量和禁止其他地区。 期限“带隙”提到上面的能量区别之间 化学价带 并且底部 传导带; 电子能从一条带跳跃到另一个。 传导性 纯半导体 依靠强烈带隙。 唯一的可利用的载体为传导是有横跨带隙将被激发的足够的热能的电子。 带隙工程学是控制或修改材料的带隙的过程通过控制某一半导体的构成 合金例如GaAlAs、InGaAs和InAlAs。 靠技术修建层状材料与交替的构成象也是可能的 分子束外延. 这些方法在设计被利用 异质结双极晶体管 (HBTs), laser二极管 并且 太阳能电池. 半导体和绝缘体之间的分别是大会事情。 一种方法将认为半导体作为绝缘体的类型以低带隙。 绝缘体以更高的带隙,通常大于3 eV,没有被认为半导体和不在实用情况下一般显示semiconductive行为。 电子迁移率 在确定材料的不拘形式的分类也扮演一个角色。 带隙取决于温度由于 热扩散. 带隙也取决于压力。 带隙可以是二者之一 直接 或 间接bandgaps根据 带状组织. 材料 标志 带隙(eV) @ 300K 硅 Si 1.11 [1] 锗 Ge 0.67 [1] 碳化硅 SiC 2.86 [1] 铝磷化物 阿尔卑斯 2.45 [1] 铝砷化物 呀 2.16 [1] 铝锑化物 AlSb 1.6 [1] 铝氮化物 AlN 6.3 金刚石 C 5.5 镓(III)磷化物 空白 2.26 [1] 镓(III)砷化物 GaAs 1.43 [1] 镓(III)氮化物 GaN 3.4 [1] 镓(II)硫化物 气体 2.5 (@ 295 K) 镓锑化物 GaSb 0.7 [1] 铟(III)磷化物 InP 1.35 [1] 铟(III)砷化物 InAs 0.36 [1] 锌硫化物 ZnS 3.6 [1] 锌硒化物 ZnSe 2.7 [1] 锌碲化物 ZnTe 2.25 [1] 硫化镉 CdS 2.42 [1] 镉硒化物 CdSe 1.73 [1] 碲化镉 CdTe 1.49 [2] 主角(II)硫化物 PbS 0.37 [1] 主角(II)硒化物 PbSe 0.27 [1] 主角(II)碲化物 PbTe 0.29 [1]

6,半导体和电阻的区别

1、半导体通常是指导电率介于导体与绝缘体之间的材料。 电导率的范围是:10^(-8)→103 (西门子/厘米) 也就是应用了它们的半导电性。2、半导体是现代电子仪器的最基本的材料,这些仪器包括:无线电、电脑、电话等等。3、半导体器件包括各种二极管、三极管、太阳能电池、硅控放大器、数字电路、集成电路等等。4、电导率低于10^(-8)西门子/厘米)的材料称为绝缘体。 电导率高于103(西门子/厘米)的材料成为导体。 所有的导体都有大量的自由电子。 5、电阻是指导体内阻碍电流流动的能力,电阻率越大,阻碍电流的能力就越强。电导率的倒数就是电阻率。6、任何导体、半导体、绝缘体,都有或多或少的阻碍电流的能力,电阻率不可能为零,在超低温下,电阻率趋向于0.7、任何消耗电能的器件,包括导线都有电阻。 8、汉语中的电阻概念比较笼统,英语中有明确区分:Resistor = 电阻器;Resistance = 电阻值;Resistivity = 电阻率。通常我们将电阻器与电阻值混为一谈,都称为电阻。任何用电器都是电阻器,任何导线本身也是电阻器。导线消耗电能,降低电压,所以,我们需要变压器升高电压,保持正常的工作电压。但是经过变压器之后,电流强度就下降了。导线自然是导体,功能是导电,是尽可能的减低传输过程中的能量损失。用电器是将电能转换成其他能量的转换器,要的就是消耗电能,转化成其他能量。9、实验室的电阻器完全是消耗电能的元件,并非将电能转换成其他能量。它的功用只是用于控制实验时的电流强度、分出去的电压(可变电阻可做分压器)符合实验的要求,以便实验顺利进行。
不同范畴的名词。半导体是材料按电阻率特性的一个分类。电阻是一个物理量,也可以是“电阻器”的简称,是元器件。半导体以外,其它常规材料可以分成导体和绝缘体。在未被击穿时,半导体的导电性能介于导体和绝缘体之间。和电阻器可比的东西,应该是二极管之类。----[原创回答团]
半导体及其基本特性 1.1 金属 - 半导体 - 绝缘体 我们知道,自然界中的物质大致可分为气体、液体、固体、等离子体 4 种基本形态。在固体材料中,根据其导电性能的差异,又可分为金属、半导体和绝缘体。例如,铜、铝、金、银等金属;它们的导电本领都很大,是良好的导体;橡胶、塑料、电木等导电本领很小,是绝缘体;制造半导体器件的主要材料硅、锗、砷化镓等,它们的导电本领比导体小而比绝缘体大,叫做半导体。 物体导电本领的大小可用 电 阻 率 来表示。金属导体的电阻率约在 10 -4 w ·cm 以下,绝缘体的电阻率约在 10 9 w ·cm 以上,半导体的电子率是介于二者之间,约在 10 -4 ~ 10 9 w ·cm 。 图 1.1 列出这三类中一些重要材料的电阻率和 电导率 。 图 1.1 1.2 常见的半导体材料 ? 元素半导体 有关半导体材料的研究开始于 19 世纪初。多年以来许多半导体已被研究过。 表 1.1 列出周期表中有关半导体元素的部分。在周期表第 iv 族中的元素如硅( si )、锗( ge )都是由单一原子所组成的元素半导体。在 20 世纪 50 年代初期,锗曾是最主要的半导体材料。但自 60 年代初期以来,硅已取而代之成为半导体制造的主要材料。现今我们使用硅的主要原因,乃是因为硅器件在室温下有较佳,且高品质的硅氧化层可由热生长的方式产生。经济上的考虑也是原因之一,可用于制造器件等级的硅材料,远比其他半导体材料价格低廉。在二氧化硅及硅酸盐中的硅含量占地表的 25 %,仅次于氧。到目前为止,硅可说是周期表中被研究最多且技术最成熟的半导体 元素 。 表 1.1 周期表中于半导体相关的部分 ? 化合物半导体 近年来一些 化合物 半导体已被应用于各种器件中。 表 1.2 列出与两种元素半导体同样重要的化合物半导体。二元化合物半导体是由周期表中的两种元素组成。例如, iii-v 族元素化合物半导体砷化镓( gaas )是由 iii 族元素镓( ga )及 v 族元素砷( as )所组成。 除了二元化合物半导体外,三元及四元半导体化合物半导体也各有其特殊用途。由 iii 族元素铝( al )、镓( ga )及 v 族元素砷( as )所组成的合金半导体 al x ga 1-x as 即是一种三元化合物半导体,而具有 a x b 1-x c y d 1-y 形式的四元化合物半导体则可由许多二元及三元化合物半导体组成。例如,合金半导体 ga x in 1-x as y p 1-y 是由磷化镓( gap )、磷化铟( inp )、砷化铟( inas )及砷化镓( gaas )所组成。与元素半导体相比,制作单晶体形式的化合物半导体通常需要较复杂的程序。 许多化合物半导体具有与硅不同的电和光的特性。这些半导体,特别是砷化镓( gaas ),主要用于高速光电器件。虽然化合物半导体的技术不如硅半导体技术成熟,但硅半导体技术的快速发展,也同时带动化合物半导体技术的成长。 1.3 半导体导电性的特点 实际上,金属、半导体和绝缘体之间的界限并不是绝对的。通常,当半导体中的杂质含量很高时,电导率很高,呈现出一定的金属性,而纯净半导体在低温下的电导率很低,呈现出绝缘性。一般半导体和金属的区别在于半导体中存在着 禁带 而金属中不存在禁带;区分半导体和绝缘体则更加困难,通常根据它们的禁带宽度及其温度特性加以区分。 半导体的导电性究竟具有哪些特点呢?大致可归纳以下几个方面: ( 1 )半导体的电阻率对温度的反应灵敏。纯净半导体的电阻率随温度变化很显著,而且电阻率随温度升高而下降。例如纯锗,当温度从 20 o c 升高到 30 o c 时,电阻率就降低一半左右。而金属的电阻率随温度的变化比较小,而且随温度升高电阻率增大。 ( 2 )微量的杂质能显著地改变半导体的电阻率。例如在纯硅中掺入 6 ′ 10 15 /cm 3 的杂质磷或锑,即在硅中掺入千万分之一的杂质,就能使它的电阻率从 2.15 ′ 10 5 w ·cm 减小到 1 w ·cm ,降低了 20 万倍。晶格结构的完整与否也会对半导体导电性能有极大的影响。因此在制作半导体器件时除人为地在半导体中掺入有用杂质来控制半导体的导电性外,还要严格防止一些有害杂质对半导体的沾污,以免改变半导体的导电性能,使生产出来的器件质量下降,甚至报废。但金属中含有少量杂质时,看不出电阻率会有什么显著的变化。 ( 3 )适当的光照可使半导体的电阻率显著改变。当某种频率的光照射半导体时,会使半导体的电阻率显著下降,这种现象叫光电导。自动控制中用到的光敏电阻就是利用半导体的光电导特性来制成的。但是,金属的电阻率不受光照影响。 总之,半导体的导电性能非常灵敏地依赖于外界条件、材料的纯度以及晶体结构的完整性等。半导体的导电性能所以有上述特点是由半导体内部特殊的微观结构所决定的,后面将叙述半导体导电的内在规律。

文章TAG:INAS  因为的英文  
下一篇