传输线理论,传输线理论中的特征阻抗和LC谐振电路中的特征阻抗有什么关联吗
来源:整理 编辑:智能门户 2025-02-08 12:52:57
本文目录一览
1,传输线理论中的特征阻抗和LC谐振电路中的特征阻抗有什么关联吗
不一样 一个是传输线的特性阻抗 这个阻抗跟传输线有关 另一个是LC的谐振后的阻抗
2,在传输线理论中电路理论与场的理论是怎么联系起来的
你好!我也不能具体的说,指个方向吧。天线传输,这一方面。传输中电路,有电流传输就能产生场。尤其是天线,通过传输线路振荡产生电磁波传输。现在很久不看书了也不能说得系统。你看看如果对你有帮助,望采纳。
3,传输线理论中什么时候不考虑反射波
你说的话不完整。。。。半句话。。。是不是说传输线在信号(入射)方向上一直延伸?如果一直延伸,就是无阻抗不续连点,那当然就没反射了。。。 阻抗连续就是传输线上每一点的阻抗都相同,只有无限延伸或者在终端接阻抗匹配的负载 才能满足各点阻抗一样,无反射波存在比如 在传播方向有限长传输线,假如他的终端是开路的,那么反射系数就是1有反射波存在,因为他在终端的阻抗(开路)不与传输线特性阻抗匹配。线路加终端匹配电阻或降低边沿斜率是解决反射波的手段。不考虑传输线的反射的情况一般是:线路短、频率低(边沿平缓)、振铃效应不明显。这个真的需要具体分析。
4,传输线理论的简介
在低频时候,例如一个台灯的电源线长2米,其电源的工作频率是50Hz,波长就是6000公里。这根电源线相对于波长来讲是非常短的,不需要考虑波动效应,我们可以把它看成短路。而对于一个便携式产品如手提电脑、PDA等PCB板设计,假如工作频率在100MHz或者几个GHz,工作的波长和连接器的尺寸可以相互比拟,在连接器上面信号已经有明显的波动效应,这时必须考虑传输线效应。在PCB设计者常见的传输线有微带线(microstrip)、带线(stripline)、电缆(cable)、连接器(connector)等等。对于简单的传输TEM模式的单线传输线,例如微带线,可以等效成如下简单的结构:上图中RLGC为单位长度的电参数,其中RG值与导体损耗,介质损耗,辐32313133353236313431303231363533e4b893e5b19e31333361303131射损耗相关,LC和物理横截面尺寸相关;等效的RLGC参数一般情况下都是频率的函数。在一些特殊情况下(低频或者频带相对比较窄等)RLGC近似看作是常数。取长度dz,传输线方程:或者写成时谐条件下频率域方程可以看出,上面方程是关于v或者i相互独立、无耦合的二阶椭圆微分方程,其解可以表达成简单的指数函数(或者三角函数)的组合。对于多线传输网络,需要耦合传输线理论进行分析。
5,什么是阻抗匹配有什么作用具体在那些电路
【请仔细品味-此为网络上最透彻的回答】 【阻抗匹配】 是指信号源或者传输线跟负载之间的一种合适的搭配方式。 阻抗匹配分为【低频】和【高频】两种情况讨论。 ========================================================================== 【低频】我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r) =U*U*R/[(R-r)*(R-r)+4*R*r] =U*U/对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。 从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 ========================================================================= 【高频、微波】在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。 传输线的【特征阻抗】(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。 这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。 当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。 【这是我收藏的一个朋友的回答,非常清晰、准确】就以收音机的末级功放输出电路为例。(见插图)图中左边框内是功放输出的等效电路,由放大器输出端内阻R0和电动势E组成,右边是扬声器负载RL。根据全电路的欧姆定律,I=E/(R0+RL),负载上的功率为:PL=RLxI^2=RLx(E^2)/(R0+RL)^2;求上式的极值,当R0=RL时,PL为最大。也就是说,此时负载上得到的功率为最大。我们说,此时的负载和电路的输出阻抗是匹配的。
6,什么是阻抗匹配
阻抗匹配在高频设计中是一个常用的概念。是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
详细的看看下面链接就全明白啦!阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
更多资料请访问 《《《《 微波网 》》》》【请仔细品味-此为网络上最透彻的回答。如果没有学过微波电路,第二部分很难理解】
阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。
========================================================================== 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:
P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)
=U*U*R/[(R-r)*(R-r)+4*R*r]
=U*U/{[(R-r)*(R-r)/R]+4*r}
对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。
从以上分析我们可以得出结论:
如果我们需要输出电流大,则选择小的负载R;
如果我们需要输出电压大,则选择大的负载R;
如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。
有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。
=========================================================================
在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。
传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。
这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。
当阻抗不匹配时,有哪些办法让它匹配呢?
第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。
第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。
第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。
【这是我收藏的一个朋友的回答,非常清晰、准确】
文章TAG:
传输 传输线 理论 特征 传输线理论
大家都在看
-
自动化设备静电过大怎么消除,如何消除静电?
2023-12-15
-
贴片,什么是贴片
2023-12-22
-
数据与信息关系是,数据信息:数据或不能说是信息
2023-12-26
-
浙江设计自动化专业大学,大学自动化设计专业有哪些?
2024-02-25
-
rca自动化组装设备,非标自动化设备有哪些?
2024-03-03
-
硫化碳,硫化碳的化学符号
2024-04-05
-
山东电气自动化专业排名,电气自动化专业院校排名
2024-06-09
-
生产机器人工厂,超级机器人工厂
2024-08-18
-
伐竹自动化设备,景洪竹木加工自动化设备
2024-09-09
-
机器人教育需要什么,码高机器人教育怎么样
2024-09-13
-
扫地机器人吸尘效果
2024-09-29
-
络合作用,传荷络合作用
2024-11-09
-
485电表,远程抄表485电表是什么样的
2024-12-09
-
minimal,在数学里minimum和minimal有啥区别吗
2025-01-04
-
自动化不锈钢接头设备,不锈钢快速接头你想知道什么?
2025-01-09