本文目录一览

1,什么是卷积定理

卷积定理 f(x,y)*h(x,y)<=>F(u,v)H(u,v) f(x,y)h(x,y)<=>F(u,v)*H(u,v) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。

什么是卷积定理

2,卷积定理公式不明白 请教大家

从负无穷到正无穷,就是取遍所有能取到的区域,具体还要看f(x)的定义域;另外,卷积定理应是f(z)g(x-z)对z积分,注意是f(z)不是f(x)
好久的问题啊……f(x)g(x-z)第一个也是Z不是X。Z是定义域内从小到大都取一遍的。
f(x)g(x)=∫f(z)g(x-z)dz Z的取值是-∞~+∞,再根据实际的x的定义域进行实际选取。
卷积定理 f(x,y)*h(x,y)<=>f(u,v)h(u,v) f(x,y)h(x,y)<=>f(u,v)*h(u,v) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。

卷积定理公式不明白 请教大家

3,卷积定理定义是什么

f(x,y) * h(x,y)<=>F(u,v)H(u,v) f(x,y)h(x,y)<=>[F(u,v) * H(u,v)]/2π (A * B 表示做A与B的卷积) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2N - 1组对位乘法,其计算复杂度为O(N * N);而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为O(N * log N)。这一结果可以在快速乘法计算中得到应用。
卷积定理 f(x,y)*h(x,y)<=>f(u,v)h(u,v) f(x,y)h(x,y)<=>f(u,v)*h(u,v) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。

卷积定理定义是什么

4,如何证明频域卷积定理

具体回答如图:函数卷积的傅立叶变换是函数傅立叶变换的乘积。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。扩展资料:卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。参考资料来源:百度百科--卷积定理
是傅立叶变换满足的一个重要性质。频域卷积定理表明,时域中两个信号的积对应于两个信号的傅立叶变换的卷积除以2Л。卷积定理揭示了时间域与频率域的对应关系。这个定理适用于Laplace变换、Z变换、Mellin变换和其它傅立叶变换的变化。应该注意的是,以上写法仅适用于特定形式的转换,因为转换可能以其它方式进行规范化,从而使得上面的关系式中出现其它的常数因子。扩展信息:卷积定理的应用在许多有关积分变换和积分方程的文章中都有反映。常见的一些重要的积分变换,例如:Mellin变换、Laplace变换、Fourier变换等都具有所谓的卷积性质(Convolution Property)。这里要注意的是,针对不同的积分变换,卷积性质的形式不是完全相同的,只要一些基本的结构得到保留就可以了。卷积定理还可以简化卷积的运算量。对于长度为 n的序列,按照卷积的定义进行计算,需要做2n-1组对位乘法,其计算复杂度为O(n·n)。参考资料来源:百度百科-卷积定理参考资料来源:百度百科-卷积
设IF表示傅立叶逆变换,则因此有故频域卷积定理得证。扩展资料频域卷积定理频域卷积定理表明两信号在时域的乘积对应于这两个信号傅立叶变换的卷积除以2π。卷积定理揭示了时间域与频率域的对应关系。这一定理对Laplace变换、Z变换、Mellin变换等各种傅立叶变换的变体同样成立。需要注意的是,以上写法只对特定形式的变换正确,因为变换可能由其它方式正规化,从而使得上面的关系式中出现其它的常数因子。傅里叶变换属于谐波分析。傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT))。参考资料来源:百度百科-卷积定理参考资料来源:百度百科-傅里叶变换
请点击图片看大图

5,卷积运算是啥

在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移与g的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。简单介绍卷积是分析数学中一种重要的运算。设:f(x),g(x)是R1上的两个可积函数,作积分:可以证明,关于几乎所有的,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f*g)(x)=(g*f)(x),并且(f*g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧支集的光滑函数,f为局部可积时,它们的卷积f*g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。卷积的概念还可以推广到数列、测度以及广义函数上去。卷积在工程和数学上都有很多应用:统计学中,加权的滑动平均是一种卷积。概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。物理学中,任何一个线性系统(符合叠加原理)都存在卷积。卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到:for(i=0;i<N;i++)for(j=0;j<N;j++)g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2));sum+=g[i*N+j];}}再除以sum得到归一化算子N是滤波器的大小,delta自选首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入输出和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。 高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到: for(i=0; i{ for(j=0; j{ g[i*n+j]=exp(-((i-(n-1)/2)^2+(j-(n-1)/2)^2))/(2*delta^2)); sum += g[i*n+j]; } } 再除以 sum 得到归一化算子 n是滤波器的大小,delta自选
卷积是一种基本运算,在泛函和广义函数中经常出现,而在概率论中两个独立和的密度就是卷积形式在泛函分析中,卷积是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与经过翻转和平移的g 的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
不知道为什么很多人将如此简单点的问题,回答得如此之复杂,难道真是那句话,什么是教授,教授就是将人人都懂的问题,解释得人人都听不懂,看来很多学生继承了这种传统,这是教育的悲哀!什么是卷积,为什么要用卷积?原因很简单,任何一个输入信号都可以看成是一个个冲激信号的叠加,那么对应的输出也可以看做是一个个冲激响应的叠加将这一个个冲激响应叠加起来就是一个卷积吗!之所以引入卷积,是因为引入了冲激,将这些冲激响应叠加起来,就是卷积

6,线性代数里什么叫卷积

所谓的卷积即是一种加权平均形式上卷积f*g是积分f(t-s)g(s)ds,可以看成f在权数g下的平均,或者g在权数f下的平均
科技名词定义中文名称:卷积 英文名称:convolution 定义:数学中关于两个函数的一种无穷积分运算。对于函数f1(t)和f2(t),其卷积表示为:式中:“”为卷积运算符号。 所属学科: 电力(一级学科) ;通论(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片卷积运算图在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表徵函数f 与经过翻转和平移与g 的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。目录[隐藏]基本内涵定义快速卷积算法多元函数卷积性质卷积定理在群上的卷积应用基本内涵 定义 快速卷积算法 多元函数卷积性质 卷积定理 在群上的卷积 应用 [编辑本段]基本内涵 简单介绍 卷积是分析数学中一种重要的运算。设: f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的 ,上述积分是存在的。这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x) 仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g 一般要比f 和g 都光滑。特别当g 为具有紧支集的光滑函数,f 为局部可积时,它们的卷积f * g 也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f 的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。[编辑本段]定义 函数f 与g 的卷积记作,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数。 积分区间取决于f 与g 的定义域。 对于定义在离散域的函数,卷积定义为快速卷积算法 当 是有限长度 N ,需要约 N 次运算。藉由一些快速算法可以降到 O(N log N) 复杂度。 最常见的快速卷积算法是藉由圆周摺积利用快速傅里叶变换。也可藉由其它不包含 FFT 的做法,如数论转换。多元函数卷积 按照翻转、平移、积分的定义,还可以类似的定义多元函数上的积分:[编辑本段]性质 各种卷积算子都满足下列性质: 交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。 微分定理 其中Df 表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种: 前向差分: 后向差分:[编辑本段]卷积定理 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。 其中表示f 的傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n - 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。[编辑本段]在群上的卷积 若G 是有某m测度的群(例如豪斯多夫空间上Harr测度下局部紧致的拓扑群),对于G 上m-勒贝格可积的实数或复数函数f 和g,可定义它们的卷积: 对于这些群上定义的卷积同样可以给出诸如卷积定理等性质,但是这需要对这些群的表示理论以及调和分析的Peter-Weyl定理。[编辑本段]应用 卷积在工程和数学上都有很多应用: 统计学中,加权的滑动平均是一种卷积。 概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。 声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。 电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。 物理学中,任何一个线性系统(符合叠加原理)都存在卷积。 卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。 高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到: for(i=0; i<N; i++) { for(j=0; j<N; j++) { g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2)); sum += g[i*N+j]; } } 再除以 sum 得到归一化算子 N是滤波器的大小,delta自选 首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。 信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。 因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。 卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理 中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。

文章TAG:卷积定理  什么  卷积定理  
下一篇