大数据存储,大数据中高效运算和低耗能存储依赖以下哪些技术
来源:整理 编辑:智能门户 2023-08-18 19:08:58
本文目录一览
1,大数据中高效运算和低耗能存储依赖以下哪些技术
主要由以下三点作用:第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。-
2,利用MySQL数据库如何解决大数据量存储问题
照你的需求来看,可以有两种方式,一种是分表,另一种是分区
首先是分表,就像你自己所说的,可以按月分表,可以按用户ID分表等等,至于采用哪种方式分表,要看你的业务逻辑了,分表不好的地方就是查询有时候需要跨多个表。
然后是分区,分区可以将表分离在若干不同的表空间上,用分而治之的方法来支撑无限膨胀的大表,给大表在物理一级的可管理性。将大表分割成较小的分区可以改善表的维护、备份、恢复、事务及查询性能。分区的好处是分区的优点:
1 增强可用性:如果表的一个分区由于系统故障而不能使用,表的其余好的分区仍然可以使用;
2 减少关闭时间:如果系统故障只影响表的一部分分区,那么只有这部分分区需要修复,故能比整个大表修复花的时间更少;
3 维护轻松:如果需要重建表,独立管理每个分区比管理单个大表要轻松得多;
4 均衡I/O:可以把表的不同分区分配到不同的磁盘来平衡I/O改善性能;
5 改善性能:对大表的查询、增加、修改等操作可以分解到表的不同分区来并行执行,可使运行速度更快;
6 分区对用户透明,最终用户感觉不到分区的存在。

3,大数据和传统数据存储的区别
没什么关联性 大数据是海量数据、是一种现状、一种解决问题的手段 传统数据存储是存储的问题主要区别在于,现在的大数据包括非结构化数据,并且可以从各种数据中提取有用的信息,比如邮件、日志文件、社交多媒体、商业交易及其他数据。比如,保存在数据库里的一家连锁零售商店的某商品的销售图表数据。对这些数据的获取就不是大数据范畴的问题。大数据应用的一个主要特点是实时性或者近实时性。大数据比传统数据存储更需要非常高性能、高吞吐率、大容量的基础设备。传统数据和大数据的区别 第一、计算机科学在大数据出现之前,非常依赖模型以及算法。人们如果想要得到精准的结论,需要建立模型来描述问题,同时,需要理顺逻辑,理解因果,设计精妙的算法来得出接近现实的结论。因此,一个问题,能否得到最好的解决,取决于建模是否合理,各种算法的比拼成为决定成败的关键。然而,大数据的出现彻底改变了人们对于建模和算法的依赖。举例来说,假设解决某一问题有算法a 和算法b。在小量数据中运行时,算法a的结果明显优于算法b。也就是说,就算法本身而言,算法a能够带来更好的结果;然而,人们发现,当数据量不断增大时,算法b在大量数据中运行的结果优于算法a在小量数据中运行的结果。这一发现给计算机学科及计算机衍生学科都带来了里程碑式的启示:当数据越来越大时,数据本身(而不是研究数据所使用的算法和模型)保证了数据分析结果的有效性。即便缺乏精准的算法,只要拥有足够多的数据,也能得到接近事实的结论。数据因此而被誉为新的生产力。 第二、当数据足够多的时候,不需要了解具体的因果关系就能够得出结论。 例如,google 在帮助用户翻译时,并不是设定各种语法和翻译规则。而是利用google数据库中收集的所有用户的用词习惯进行比较推荐。google检查所有用户的写作习惯,将最常用、出现频率最高的翻译方式推荐给用户。在这一过程中,计算机可以并不了解问题的逻辑,但是当用户行为的记录数据越来越多时,计算机就可以在不了解问题逻辑的情况之下,提供最为可靠的结果。可见,海量数据和处理这些数据的分析工具,为理解世界提供了一条完整的新途径。 第三、由于能够处理多种数据结构,大数据能够在最大程度上利用互联网上记录的人类行为数据进行分析。大数据出现之前,计算机所能够处理的数据都需要前期进行结构化处理,并记录在相应的数据库中。但大数据技术对于数据的结构的要求大大降低,互联网上人们留下的社交信息、地理位置信息、行为习惯信息、偏好信息等各种维度的信息都可以实时处理,立体完整地勾勒出每一个个体的各种特征。在大数据领域发展较早也做的比较好的算是八爪鱼采集器了。
4,大数据时代数据应该如何存储
PB或多PB级基础设施与传统大规模数据集之间的差别简直就像白天和黑夜的差别,就像在笔记本电脑上处理数据和在RAID阵列上处理数据之间的差别。"当Day在2009年加入Shutterfly时,存储已经成为该公司最大的开支,并且以飞快的速度增长。"每N个PB的额外存储意味着我们需要另一个存储管理员来支持物理和逻辑基础设施,"Day表示,"面对大规模数据存储,系统会更频繁地出问题,任何管理超大存储的人经常都要处理硬件故障。大家都在试图解决的根本问题是:当你知道存储的一部分将在一段时间内出现问题,你应该如何确保数据可用性,同时确保不会降低性能?"RAID问题解决故障的标准答案是复制,通常以RAID阵列的形式。但Day表示,面对庞大规模的数据时,RAID解决问题的同时可能会制造更多问题。在传统RAID数据存储方案中,每个数据的副本都被镜像和存储在阵列的不同磁盘中,以确保完整性和可用性。但这意味着每个被镜像和存储的数据将需要其本身五倍以上的存储空间。随着RAID阵列中使用的磁盘越来越大(从密度和功耗的角度来看,3TB磁盘非常具有吸引力),更换故障驱动器的时间也将变得越来越长。"实际上,我们使用RAID并不存在任何操作问题,"Day表示,"我们看到的是,随着磁盘变得越来越大,当任何组件发生故障时,我们回到一个完全冗余的系统的时间增加。生成校验是与数据集的大小成正比的。当我们开始使用1TB和2TB的磁盘时,回到完全冗余系统的时间变得很长。可以说,这种趋势并没有朝着正确的方向发展。"对于Shutterfly而言,可靠性和可用性是非常关键的因素,这也是企业级存储的要求。Day表示,其快速膨胀的存储成本使商品系统变得更具吸引力。当Day及其团队在研究潜在技术解决方案以帮助控制存储成本时,他们对于一项叫做纠删码(erasure code)的技术非常感兴趣。采用擦除代码技术的下一代存储里德-所罗门纠删码最初作为前向纠错码(Forward Error Correction, FEC)用于不可靠通道的数据传输,例如外层空间探测的数据传输。这项技术还被用于CD和DVD来处理光盘上的故障,例如灰尘和划痕。一些存储供应商已经开始将纠删码纳入他们的解决方案中。使用纠删码,数据可以被分解成几块,单块分解数据是无用的,然后它们被分散到不同磁盘驱动器或者服务器。在任何使用,这些数据都可以完全重组,即使有些数据块因为磁盘故障已经丢失。换句话说,你不需要创建多个数据副本,单个数据就可以确保数据的完整性和可用性。基于纠删码的解决方案的早期供应商之一是Cleversafe公司,他们添加了位置信息来创建其所谓的分散编码,让用户可以在不同位置(例如多个数据中心)存储数据块或者说数据片。每个数据块就其自身而言是无用的,这样能够确保隐私性和安全性。因为信息分散技术使用单一数据来确保数据完整性和可用性,而不是像RAID一样使用多个副本,公司可以节省多达90%的存储成本。"当你将试图重组数据时,你并不一定需要提供所有数据块,"Cleversafe公司产品策略、市场营销和客户解决方案副总裁Russ Kennedy表示,"你生成的数据块的数量,我们称之为宽度,我们将重组数据需要的最低数量称之为门槛。你生成的数据块的数量和重组需要的数量之间的差异决定了其可靠性。同时,即使你丢失节点和驱动器,你仍然能够得到原来形式的数据。"
5,微服务容器平台面对大数据存储是怎么做的
整体而言,大数据平台从平台部署和数据分析过程可分为如下几步: 1、linux系统安装 一般使用开源版的Redhat系统--CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。例如,可以选择给HDFS的namenode做RAID2以提高其稳定性,将数据存储与操作系统分别放置在不同硬盘上,以确保操作系统的正常运行。 2、分布式计算平台/组件安装 目前国内外的分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等。先说下使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方)。2)开源组件一般免费,学习和维护相对方便。3)开源组件一般会持续更新,提供必要的更新服务『当然还需要手动做更新操作』。4)因为代码开源,若出bug可自由对源码作修改维护。再简略讲讲各组件的功能。分布式集群的资源管理器一般用Yarn,『全名是Yet Another Resource Negotiator』。常用的分布式数据数据『仓』库有Hive、Hbase。Hive可以用SQL查询『但效率略低』,Hbase可以快速『近实时』读取行。外部数据库导入导出需要用到Sqoop。Sqoop将数据从Oracle、MySQL等传统数据库导入Hive或Hbase。Zookeeper是提供数据同步服务,Yarn和Hbase需要它的支持。Impala是对hive的一个补充,可以实现高效的SQL查询。ElasticSearch是一个分布式的搜索引擎。针对分析,目前最火的是Spark『此处忽略其他,如基础的MapReduce 和 Flink』。Spark在core上面有ML lib,Spark Streaming、Spark QL和GraphX等库,可以满足几乎所有常见数据分析需求。值得一提的是,上面提到的组件,如何将其有机结合起来,完成某个任务,不是一个简单的工作,可能会非常耗时。3、数据导入前面提到,数据导入的工具是Sqoop。用它可以将数据从文件或者传统数据库导入到分布式平台『一般主要导入到Hive,也可将数据导入到Hbase』。4、数据分析数据分析一般包括两个阶段:数据预处理和数据建模分析。数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。这个过程可能会用到Hive SQL,Spark QL和Impala。数据建模分析是针对预处理提取的特征/数据建模,得到想要的结果。如前面所提到的,这一块最好用的是Spark。常用的机器学习算法,如朴素贝叶斯、逻辑回归、决策树、神经网络、TFIDF、协同过滤等,都已经在ML lib里面,调用比较方便。5、结果可视化及输出API可视化一般式对结果或部分原始数据做展示。一般有两种情况,行熟悉展示,和列查找展示。在这里,要基于大数据平台做展示,会需要用到ElasticSearch和Hbase。Hbase提供快速『ms级别』的行查找。 ElasticSearch可以实现列索引,提供快速列查找。平台搭建主要问题: 1、稳定性 Stability 理论上来说,稳定性是分布式系统最大的优势,因为它可以通过多台机器做数据及程序运行备份以确保系统稳定。但也由于大数据平台部署于多台机器上,配置不合适,也可能成为最大的问题。 曾经遇到的一个问题是Hbase经常挂掉,主要原因是采购的硬盘质量较差。硬盘损坏有时会到导致Hbase同步出现问题,因而导致Hbase服务停止。由于硬盘质量较差,隔三差五会出现服务停止现象,耗费大量时间。结论:大数据平台相对于超算确实廉价,但是配置还是必须高于家用电脑的。2、可扩展性 Scalability 如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。 上述是自己项目实践的总结。整个平台搭建过程耗时耗力,非一两个人可以完成。一个小团队要真正做到这些也需要耗费很长时间。目前国内和国际上已有多家公司提供大数据平台搭建服务,国外有名的公司有Cloudera,Hortonworks,MapR等,国内也有华为、明略数据、星环等。另外有些公司如明略数据等还提供一体化的解决方案,寻求这些公司合作对 于入门级的大数据企业或没有大数据分析能力的企业来说是最好的解决途径。对于一些本身体量较小或者目前数据量积累较少的公司,个人认为没有必要搭建这一套系统,暂时先租用AWS和阿里云就够了。对于数据量大,但数据分析需求较简单的公司,可以直接买Tableau,Splunk,HP Vertica,或者IBM DB2等软件或服务即可。-搜一下:微服务容器平台面对大数据存储是怎么做的再看看别人怎么说的。
6,大数据存储需要具备什么
大数据之大 大是相对而言的概念。例如,对于像SAPHANA那样的内存数据库来说,2TB可能就已经是大容量了;而对于像谷歌这样的搜索引擎,EB的数据量才能称得上是大数据。 大也是一个迅速变化的概念。HDS在2004年发布的USP存储虚拟化平台具备管理32PB内外部附加存储的能力。当时,大多数人认为,USP的存储容量大得有些离谱。但是现在,大多数企业都已经拥有PB级的数据量,一些搜索引擎公司的数据存储量甚至达到了EB级。由于许多家庭都保存了TB级的数据量,一些云计算公司正在推广其文件共享或家庭数据备份服务。 有容乃大 由此看来,大数据存储的首要需求存储容量可扩展。大数据对存储容量的需求已经超出目前用户现有的存储能力。我们现在正处于PB级时代,而EB级时代即将到来。过去,许多企业通常以五年作为IT系统规划的一个周期。在这五年中,企业的存储容量可能会增加一倍。现在,企业则需要制定存储数据量级(比如从PB级到EB级)的增长计划,只有这样才能确保业务不受干扰地持续增长。这就要求实现存储虚拟化。存储虚拟化是目前为止提高存储效率最重要、最有效的技术手段。它为现有存储系统提供了自动分层和精简配置等提高存储效率的工具。拥有了虚拟化存储,用户可以将来自内部和外部存储系统中的结构化和非结构化数据全部整合到一个单一的存储平台上。当所有存储资产变成一个单一的存储资源池时,自动分层和精简配置功能就可以扩展到整个存储基础设施层面。在这种情况下,用户可以轻松实现容量回收和容量利用率的最大化,并延长现有存储系统的寿命,显著提高IT系统的灵活性和效率,以满足非结构化数据增长的需求。中型企业可以在不影响性能的情况下将HUS的容量扩展到近3PB,并可通过动态虚拟控制器实现系统的快速预配置。此外,通过HDSVSP的虚拟化功能,大型企业可以创建0.25EB容量的存储池。随着非结构化数据的快速增长,未来,文件与内容数据又该如何进行扩展呢? 不断生长的大数据 与结构化数据不同,很多非结构化数据需要通过互联网协议来访问,并且存储在文件或内容平台之中。大多数文件与内容平台的存储容量过去只能达到TB级,现在则需要扩展到PB级,而未来将扩展到EB级。这些非结构化的数据必须以文件或对象的形式来访问。基于Unix和Linux的传统文件系统通常将文件、目录或与其他文件系统对象有关的信息存储在一个索引节点中。索引节点不是数据本身,而是描述数据所有权、访问模式、文件大小、时间戳、文件指针和文件类型等信息的元数据。传统文件系统中的索引节点数量有限,导致文件系统可以容纳的文件、目录或对象的数量受到限制。HNAS和HCP使用基于对象的文件系统,使得其容量能够扩展到PB级,可以容纳数十亿个文件或对象。位于VSP或HUS之上的HNAS和HCP网关不仅可以充分利用模块存储的可扩展性,而且可以享受到通用管理平台HitachiCommandSuite带来的好处。HNAS和HCP为大数据的存储提供了一个优良的架构。大数据存储平台必须能够不受干扰地持续扩展,并具有跨越不同时代技术的能力。数据迁移必须在最小范围内进行,而且要在后台完成。大数据只要复制一次,就能具有很好的可恢复性。大数据存储平台可以通过版本控制来跟踪数据的变更,而不会因为大数据发生一次变更,就重新备份一次所有的数据。HDS的所有产品均可以实现后台的数据移动和分层,并可以增加VSP、HUS数据池、HNAS文件系统、HCP的容量,还能自动调整数据的布局。传统文件系统与块数据存储设备不支持动态扩展。大数据存储平台还必须具有弹性,不允许出现任何可能需要重建大数据的单点故障。HDS可以实现VSP和HUS的冗余配置,并能为HNAS和HCP节点提供相同的弹性。大数据存储作为一个数据平台,其并不仅仅是一个用于数据存储的设备,其需要能够提供符合成本效益的规模和能力,消除数据迁移,没有存储孤岛,提供全局可访问的数据保护和保持数据的可用性。1.提供符合成本效益的规模和能力,不仅需要购买行业标准的服务器和存储产品,同时还要保证产品的扩展能力和性能。而且随着硬件的推移,能够根据需要进行扩展,存储系统需要能够持续保证企业的需求,通过增加存储系统来维持数据增长的性能需求。2.消除数据迁移,大数据平台必须满足数据增长而不会受到系统约束的能力。3.拒绝存储孤岛,为了能够充分利用大数据的机会,企业必须能够访问所有的数据,要实现这一点,新的存储平台必须能够满足这个要求,消除那些传统的存储孤岛,而不是简单的添加另一个存储解决方案。4.提供全局管理方式,一个集中的数据管理方式在大数据增长迅速的年代已经是不可行的了,一个单点故障的成本会很高,一个大数据存储平台必须能够管理分布在全球企业中的数据。5.保护和维护数据的可用性,数据价值越来越重要,为了防止企业级的产品硬件发生故障,存储平台必须通过智能软件来保持数据的可用性和完整性。大数据之大大是相对而言的概念。例如,对于像saphana那样的内存数据库来说,2tb可能就已经是大容量了;而对于像谷歌这样的搜索引擎,eb的数据量才能称得上是大数据。大也是一个迅速变化的概念。hds在2004年发布的usp存储虚拟化平台具备管理32pb大数据存储需要具备什么?
文章TAG:
大数据存储 大数据中高效运算和低耗能存储依赖以下哪些技术