本文目录一览

1,半导体制造技术哪个学校最好

半导体制造技术是材料学院的吧?我觉得我们学校的材院很不错,武汉理工。。。当然肯定清华最好吧

半导体制造技术哪个学校最好

2,半导体的应用有哪些

最早的实用“半导体”是「电晶体(Transistor)/ 二极体(Diode)」。   一、在 无电收音机(Radio)及 电视机(Television)中,作为“讯号放大器 /整流器”用。   二、近来发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。   三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1摄氏度,甚至达到0.01度也不是不可能,线性度0.2%,测温范围-100~+300摄氏度,是性价比极高的一种测温元件。

半导体的应用有哪些

3,想从事微电子半导体方向的工作要学哪些课程先学什么

大方向主要有:集成电路制造(半导体工艺,半导体器件)集成电路设计(底层电路设计(偏物理)--->SOC设计(偏编程)…)MEMS(微机电系统),需要非常杂的知识面EDA,是介于制造和设计之间的一个比较独特的领域,需要比较广的知识面和编程能力一般来说最基础的四门课程包括:半导体(器件)物理,半导体工艺,模拟电路,数字电路
从事微电子有两个方向一个是工艺:包括半导体物理,集成电路生产工艺;一个是从事设计包括晶体管原理 集成电路设计 集成电路EDA
哈哈再看看别人怎么说的。
你学通信的有优势,建议先学verilog编程,你就按照协议能编号程序,直接能生成网表,工艺直接是标准工艺,不用摄入太深

想从事微电子半导体方向的工作要学哪些课程先学什么

4,DFN是什么

http://baike.baidu.com/view/494168.htmDFN  DFN:   DFN/QFN是一种最新的的电子封装工艺.ON Semiconductor公司的各种元器件都采用了先进的双边或方形扁平无铅封装(DFN/QFN)。DFN/QFN平台是最新的表面贴装封装技术。印刷电路板(PCB)的安装垫、阻焊层和模版样式设计以及组装过程,都需要遵循相应的原则。 DFN/QFN封装概述 DFN/QFN平台具有多功能性,可以让一个或多个半导体器件在无铅封装内连接。下图就展示出了这一封装的灵活性。 dfn 对象 表明术语的定义实例。 成员表标签属性属性描述 ACCESSKEY accessKey设置或获取对象的快捷键
游戏
DNF是一款 网络游戏
腾讯代理的网络游戏《地下城与勇士》《地下城与勇士》是一款韩国网络游戏公司NEOPLE开发的免费角色扮演2D游戏,由三星电子发行,并于2005年8月在韩国正式发布。该游戏是一款2D卷轴式横版格斗过关网络游戏 (MMOACT),大量继承了众多家用机、街机2D格斗游戏的特色。以任务引导角色成长为中心,结合副本、PVP、PVE为辅,与其他网络游戏同样具有装备与等级的改变,并拥有共500多种装备道具。每个人物有8个道具装备位置,在游戏中可以允许最多4个玩家进行组队挑战关卡,同样也可以进行4对4的PK。
dfn  德国科研网,为德国的研究和教育部门提供了一个高性能的基础组织,它将德国科研和教育团体紧密联系在一起,并支持创新应用的发展。,x-win由dfn-verein操纵,并由其保证x-win的长远使用和发展。dfn-verein是由德国研究、发展、教育部门组建的一个非盈利性组织,负责推动基于计算机通信和信息服务的发展。从2006年起,dfn的骨干网成为x-win。x-win连接到欧洲骨干网géant上,成为全球教育和科研网络不可分割的一部分。根据合同,x-win还连接到全球的internet网上。   半导体封装技术(semiconductor packaging)   dfn : dual flat no lead   即半导体的作为点连接面的四个边都有引脚,且引脚为导电面而非传统的插接式引脚   dfn可以大大减小半导体的体积

5,半导体是什么

◆半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体的导电性是可以受控的,范围可从绝缘体至几个欧姆之间 。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。半导体在收音机、电视机、仪器仪表以及测温上都有着广泛的应用。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。●半导体五大特性∶掺杂性(在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。),热敏性,光敏性(在光照和热辐射条件下,其导电性有明显的变化。),负电阻率温度特性,整流特性。●半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。
当电流通过各种物体时,不同的物体对电流的通过有着不同的阻止能力,有的物体可使电流顺利通过,也有的物体不让其通过,或者在一定的阻力下让它通过。这种不同的物体通过电流的能力,叫做这种物体的导电性能。各种物体均有着不同的导电性能,凡是导电性能很好的物体叫做导体。如银、铜、铝、铅、锡、铁、水银、碳和电解液等都是良好导体。反之,导电能力很差的物体叫做绝缘体。还有,有的物体的导电能力比导体差,但比绝缘体强,这种导体叫做半导体。如常用的晶体管原材料硅、锗等。收音机 CPU都是半导体 半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。 半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。 把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。
锗、硅、硒、砷化镓及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。 半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。 半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。 把一块半导体的一边制成p型区,另一边制成n型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为pn结。图中上部分为p型半导体和n型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为pn结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为pn结的形成。表示扩散作用和漂移作用的动态平衡

6,半导体的性质 作用 具有什么性

以锗硅合金为例。1、性质: 高频特性良好,材料安全性佳,导热性好,而且制程成熟、整合度高,具成本较低之优势。2、作用:不但可以直接利用半导体现有200mm 晶圆制程,达到高集成度,据以创造经济规模,还有媲美GaAs的高速特性。随着近来IDM 大厂的投入,SiGe 技术已逐步在截止频率(fT)与击穿电压(Breakdown voltage)过低等问题获得改善而日趋实用。SiGe既拥有硅工艺的集成度、良率和成本优势,又具备第3 到第5 类半导体(如砷化镓(GaAs)和磷化铟(InP))在速度方面的优点。只要增加金属和介质叠层来降低寄生电容和电感,就可以采用SiGe 半导体技术集成高质量无源部件。扩展资料:半导体的导电特性介绍:导体具有良好的导电特性,常温下,其内部存在着大量的自由电子,它们在外电场的作用下做定向运动形成较大的电流。因而导体的电阻率很小,只有 金属一般为导体,如铜、铝、银等。绝缘体几乎不导电,如橡胶、陶瓷、塑料等。在这类材料中,几乎没有自由电子,即使受外电场作用也不会形成电流,所以,绝缘体的电阻率很大,在 以上。半导体的导电能力介于导体和绝缘体之间,如硅、锗、硒等,它们的电阻率通常在 之间。半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显著。如纯净的半导体单晶硅在室温下电阻率约为 ,若按百万分之一的比例掺入少量杂质(如磷)后,其电阻率急剧下降为 ,几乎降低了一百万倍。半导体具有这种性能的根本原因在于半导体原子结构的特殊性。参考资料来源:搜狗百科-半导体搜狗百科-锗硅合金
性质 光敏性,热敏性,掺杂性作用 半导体最基本的是二极管和MOS管,原理都是基于N型和P型半导体构成的PN结。二极管是单向导电器件,可以实现整流控制等。MOS管是栅控器件,是目前集成电路中最基本的单元。半导体是微电子产业的基础。控制是它的核心。回答的简洁,具体知识参见http://baike.baidu.com/view/19928.htm
半导体是介于像铜那样易于电流通过的导体和像橡胶那样的不导通电流的绝缘体之间的物质。性质:光敏性,热敏性,掺杂性作用:半导体的作用与价值: 目前广泛应用的半导体材料有锗、硅、硒、砷化镓、磷化镓、锑化铟等.其中以锗、硅材料的生产技术较成熟,用的也较多。 用半导体材料制成的部件、集成电路等是电子工业的重要基础产品,在电子技术的各个方面已大量使用。半导体材料、器件、集成电路的生产和科研已成为电子工业的重要组成部分。在新产品研制及新技术发展方面,比较重要的领域有: (1)集成电路 它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。 (2)微波器件 半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。 (3)光电子器件 半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。
什么是半导体呢? 顾名思义:导电性能介于导体与绝缘体(insulator)之间的材料,叫做半导体(semiconductor). 物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与金属和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。 电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10-5~107欧·米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括ⅲ-ⅴ 族化合物(砷化镓、磷化镓等)、ⅱ-ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由ⅲ-ⅴ族化合物和ⅱ-ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体 不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴(图 1 )。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子 - 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。 半导体中杂质 半导体中的杂质对电阻率的影响非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多(图2)。在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。价带中由于缺少一个电子而形成一个空穴载流子(图3)。这种能提供空穴的杂质称为受主杂质。存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。半导体掺杂后其电阻率大大下降。加热或光照产生的热激发或光激发都会使自由载流子数增加而导致电阻率减小,半导体热敏电阻和光敏电阻就是根据此原理制成的。对掺入施主杂质的半导体,导电载流子主要是导带中的电子,属电子型导电,称n型半导体。掺入受主杂质的半导体属空穴型导电,称p型半导体。半导体在任何温度下都能产生电子-空穴对,故n型半导体中可存在少量导电空穴,p型半导体中可存在少量导电电子,它们均称为少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。 pn结 p型半导体与n型半导体相互接触时,其交界区域称为pn结。p区中的自由空穴和n区中的自由电子要向对方区域扩散,造成正负电荷在 pn 结两侧的积累,形成电偶极层(图4 )。电偶极层中的电场方向正好阻止扩散的进行。当由于载流子数密度不等引起的扩散作用与电偶层中电场的作用达到平衡时,p区和n区之间形成一定的电势差,称为接触电势差。由于p 区中的空穴向n区扩散后与n区中的电子复合,而n区中的电子向p区扩散后与p 区中的空穴复合,这使电偶极层中自由载流子数减少而形成高阻层,故电偶极层也叫阻挡层,阻挡层的电阻值往往是组成pn结的半导体的原有阻值的几十倍乃至几百倍。 pn结具有单向导电性,半导体整流管就是利用pn结的这一特性制成的。pn结的另一重要性质是受到光照后能产生电动势,称光生伏打效应,可利用来制造光电池。半导体三极管、可控硅、pn结光敏器件和发光二极管等半导体器件均利用了pn结的特性。

文章TAG:半导体技术  半导体制造技术哪个学校最好  
下一篇