什么是深度学习,深度学习 overshooting 什么意思
来源:整理 编辑:智能门户 2025-01-26 06:48:09
本文目录一览
1,深度学习 overshooting 什么意思

2,深度学习到底是什么 人工智能吧
人工智能涉及到的领域比较多,深度学习是其中一种比较热门的方法,比如下围棋涉及到的评估棋盘局势和一步棋价值的方法是深度学习,整个下棋过程该如何选择所用到的蒙特卡洛树,剪枝算法等,不是深度学习。
3,在图像问题中所说的深度学习是指什么
深度学习在物体识别上的另一个重要突破是人脸识别。人脸识别的最大挑战是如何区分由于光线、姿态和表情等因素引起的类内变化和由于身份不同产生的类间变化。这两种变化的分布是非线性的,且极为复杂,传统的线性模型无法将它们有效区分开。深度学习的目的是通过多层的非线性变换得到新的特征表示。这些新特征须尽可能多地去掉类内变化,而保留类间变化。
4,什么是课堂教学中的深度学习
转变教学观念,实现师生互动。明确教学目标,落实“堂堂清”。 改进教学方法,打造“生本课堂”加强课堂管理,拓展“课堂空间”要让自己的课堂变得高效起来,首先需要老师做的事,并不是考虑如何把知识传授给学生,而是如何让学生能够认清自己,也就是如何把最真实的自己呈现给学生,并进而赢得学生的喜欢与接受,从而为后期知识的传授奠定坚实的基矗
5,什么是深度学习
普通的神经网络,输入的数据对应一组组的特征值,经过学习,完成分类拟合或预测;深度学习的作用,在于确定给神经网络输入什么特征的值,即用机器完成特征提取,而不需要用其他的方式来人工确定特征,提取特征。深度学习,按个人的理解主要就是多层神经网络。而多层神经网络目前效果比较好的是卷积神经网络,目前在图像和音频信号上效果比较好,而在自然语言处理上效果没有显示出来。深度学习从统计学的角度来说,就是在预测数据的分布,从数据中学得一个模型然后再通过这个模型去预测新的数据,这一点就要求测试数据和训练数据必须是同分布。深度学习,它是在一定的学习量的积累基础之上的质的飞越,就是学习能力的质变和新实现。度学习的前提在于大数据技术的成熟和支撑。同时,深度学习是一种经验的连接和运用。它是人类的经验和智慧在机器中的再生和活化。
6,如何正确理解深度学习的概念
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有人一样的智慧;而这样一种技术在将来无疑是前景无限的。那么深度学习本质上又是一种什么样的技术呢? 深度学习是什么 深度学习是机器学习领域中对模式(声音、图像等等)进行建模的一种方法,它也是一种基于统计的概率模型。在对各种模式进行建模之后,便可以对各种模式进行识别了,例如待建模的模式是声音的话,那么这种识别便可以理解为语音识别。而类比来理解,如果说将机器学习算法类比为排序算法,那么深度学习算法便是众多排序算法当中的一种(例如冒泡排序),这种算法在某些应用场景中,会具有一定的优势。 深度学习的“深度”体现在哪里 论及深度学习中的“深度”一词,人们从感性上可能会认为,深度学习相对于传统的机器学习算法,能够做更多的事情,是一种更为“高深”的算法。而事实可能并非我们想象的那样,因为从算法输入输出的角度考虑,深度学习算法与传统的有监督机器学习算法的输入输出都是类似的,无论是最简单的logistic regression,还是到后来的svm、boosting等算法,它们能够做的事情都是类似的。正如无论使用什么样的排序算法,它们的输入和预期的输出都是类似的,区别在于各种算法在不同环境下的性能不同。 那么深度学习的“深度”本质上又指的是什么呢?深度学习的学名又叫深层神经网络(deep neural networks ),是从很久以前的人工神经网络(artificial neural networks)模型发展而来。这种模型一般采用计算机科学中的图模型来直观的表达,而深度学习的“深度”便指的是图模型的层数以及每一层的节点数量,相对于之前的神经网络而言,有了很大程度的提升。 深度学习也有许多种不同的实现形式,根据解决问题、应用领域甚至论文作者取名创意的不同,它也有不同的名字:例如卷积神经网络(convolutional neural networks)、深度置信网络(deep belief networks)、受限玻尔兹曼机(restricted boltzmann machines)、深度玻尔兹曼机(deep boltzmann machines)、递归自动编码器(recursive autoencoders)、深度表达(deep representation)等等。不过究其本质来讲,都是类似的深度神经网络模型。 既然深度学习这样一种神经网络模型在以前就出现过了,为什么在经历过一次没落之后,到现在又重新进入人们的视线当中了呢?这是因为在十几年前的硬件条件下,对高层次多节点神经网络的建模,时间复杂度(可能以年为单位)几乎是无法接受的。在很多应用当中,实际用到的是一些深度较浅的网络,虽然这种模型在这些应用当中,取得了非常好的效果(甚至是the state of art),但由于这种时间上的不可接受性,限制了其在实际应用的推广。而到了现在,计算机硬件的水平与之前已经不能同日而语,因此神经网络这样一种模型便又进入了人们的视线当中。
文章TAG:
什么 深度 深度学习 学习 什么是深度学习 overshooting 什么意思