本文目录一览

1,sixology是什么意思

六的哲学 six(六)ology(哲学)

sixology是什么意思

2,波粒二象性是什么

波粒二象性(wave-particle duality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 http://baike.baidu.com/link?url=O3dGPnbUOMjskEAe1LN6wI9ginNj-CJTsvZ-TqF4pcV5mRKTml91O3RjFSCgTYO0
物质既有波的性质也有粒子的特性,比如光。

波粒二象性是什么

3,什么是相对论和量子力学

狭义相对论是讲什么是真正的时间,空间是什么然后加在一起就是时空,广义相对论;说简单一点就是引力场,电磁场,加速度与惯性力,这两句话都代替了,时空让物质怎么运动,物质让时空怎么弯曲,量子力学就是广义相对论的具体,量子力学是从一个微观物质到宏观电磁场始终宇宙的变化,演化
相对论 相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。 狭义相对论 狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。 广义相对论 广义相对论是爱因斯坦(Albert Einstein)在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10-12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

什么是相对论和量子力学

4,什么是混沌理论

太通俗了有点对不起混沌理论,太艰深了有点对不起您。我觉得下面讲得可以看懂。 “相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。” 一点就是未来无法确定。如果你某一天确定了,那是你撞上了。 第二事物的发展是通过自我相似的秩序来实现的。看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。这是混沌理论两个基本的概念。 混沌理论还有一个是发展人格,他有三个原则,一个是事物的发展总是向他阻力最小的方向运动。第二个原则当事物改变方向的时候,他存在一些结构。 一 混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。 二 混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。 三 近半世纪以来,科学家发现许多自然现象即使可化为单纯的数学公式,但是其行径却无法加以预测。如气象学家Edward Lorenz发现,简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的「蝴蝶效应」,亦即某地下大雪,经追根究底却发现是受到几个月前远在异地的蝴蝶拍打翅膀产生气流所造成的。一九六○年代,美国数学家Stephen Smale 发现,某些物体的行径经过某种规则性的变化之后,随后的发展并无一定的轨迹可寻,呈现失序的混沌状态。 四 混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓「差之毫厘,失之千里」正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。 五 混沌理论在教育行政、课程与教学、教育研究、教育测验等方面已经有些许应用的例子。由于教育的对象是人,人是随时变动起伏的个体,而教育的过程基本上依循一定的准则,并历经长期的互动,因此,相当符合混沌理论的架构。也因此,依据混沌理论,教育系统容易产生无法预期的结果。此一结果可能是正面的,也有可能是负面的。不论是正面或是负面的,重要的是,教育的成效或教育的研究除了短期的观察之外,更应该累积长期数据,从中分析出可能的脉络出来,以增加教育效果的可预测性,并运用其扩大教育效果。

5,理论力学电动力学和量子力学相对来说哪个容易学习

特别提醒你,四大力学是相互联系的,千万不要将他们分开来看,很多人会说量子力学比较难,其实这是不对的,大部的人以为越现代的理论应该会比较难一点,然而并不然。也会有人说电动力学比较难,因为电动力学的研究对象比较抽象,然而并不然。四大力学还包括统计力学,他们没有谁比较难的区别,他们之间是相互联系的。相对来说理论力学是相对独立于其他三大力学的,因为他是最早发展起来的学科,你说他最难也可以,其他三大力学里的很多方程和定理都是从理论力学里面类比出来或者干脆直接就是相同形式的方程只是物理意义不同罢了,所以在学其他几门力学的时候,理论力学的基础是必须牢固的,我所有认识的人再学过之后都是这么说的。而电动力学的重点在于研究对象的变化,所以可能不是方法上有什么突破,关键在于对电磁的领悟。量子力学在于观念的改变,在物理思想上有本质的不同,但是在数学方法上没有什么突破。所以理论力学学方法,学计算,要特别熟练,要当成数学专业课来对待,打好基础,电动力学重点在于这些方法学推广到电磁的研究对象上,要学会类比理论力学里的对象学习,量子力学是学思想,思想上要学习那些伟大的物理学前辈们,最好能看一些国外大牛的书,国内的书请慎重选择,不然很容易误入歧途,他们往往在一些不重要的细节上大作文章,搞得与众不同,其实是误人子弟。
电动力学好学量子力学太过脱离实际经验.理解起来比电动力学难!用到的数学基础也要比电动力学多.电动力学出题形式不像量子力学花样那么多.但是电动力学的计算好多都是数学物理方程中的偏微分方程.量子力学的难点在于不好理解,计算量一般不大.
你好!我是学物理的。考研的时候也面临过你这样的一个选择的问题。我不知道你要考哪个单位,但是我个人认为,选择理论力学相对简单。电动力学其次,量子力学最难。但是每个科目有利有弊。例如理论力学理解起来很简单,做题也不难,但是你的竞争对手也一样,不容易拉开距离。而电动力学居中一点,但是你在选择考取专业的时候很受局限,因为专业课是电动力学的专业一般相对较少。选择量子力学的话,量子力学理解起来十分抽象,要花很大的功夫。但是也有一个好处就是它的题目很单调,就是几个很典型的模型换来换去的,无论是哪个单位,没有什么太大的差异,考研的试卷的题目很少,以中科院为例,一般是五个大题,每题30分,换句话说,选择量子力学的人面临两个极端的情况,你若学好了,可以高达140以上,一旦没拿住,极有可能是60分往下走。我的同学有很多面临这种情况。所以我建议你先想想你要选择考取哪个单位,在考虑专业课的问题。最好能将你想考的学校或者研究所前几年的真题看一看。会大有裨益的。每一门都有自己的好处和坏处,希望你慎重考虑。 理论力学的数学要求相对最低。主要是高数部分。电动力学和量子力学除了高数之外还有线代的要求,尤其是量子力学。电动力学最注重的是相对论,数学计算要求最多的是矢量的点乘和叉乘,梯度等。量子力学核心部分有两种方法讲解,一种是薛定谔方程,一种是海森堡矩阵力学。你可以想象了!
好像 理科的理论力学和工科的理论力学 有很大差别?数学方面,俺只熟悉高等数学、线性代数和数理统计,没学过数理方程什么的。这样的话是不是理论力学更适合自学啊?

6,量子是什么东西有什么性质有多大呢

量子是一个物理概念,没有大小之分。其基本概念为所有的有形物质是“可量子化的”。“量子化”指其物理量的数值是特定的,而不是任意值。例如,在(休息状态的)原子中,电子的能量是可量子化的。这决定原子的稳定和一般问题。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。扩展资料量子态隐形传输是基于量子纠缠态的分发与量子联合测量, 实现量子态(量子信息) 的空间转移而又不移动量子态的物理载体, 这如同将密封信件内容从一个信封内转移到另一个信封内而又不移动任何信息载体自身,这在经典通信中是无法想象的事。基于量子态隐形传输技术和量子存储技术的量子中继器可以实现任意远距离的量子密钥分发及网络。参考资料:搜狗百科-量子
量子的基本观念量子代表了人类认识微观世界的核心观念,它不仅是微观实物粒子存在的基本形式,而且描述了波与场所具有的粒子性特征。以量子力学为中心的现代量子理论,完整地描述了微观世界的量子行为。事至今天,虽然关于量子力学的基础及其解释还没有定论, 但量子力学已成为现代科学的重要基石。在应用上,它导致了激光、半导体和核能技术的建立,深刻地影响了当代人类社会的生产力。一. 光量子光量子是指光波客观上具有的基本能量(动量)单元。它代表的量子观念起源于二十世纪初对黑体辐射的研究. 普朗克发现, 为了解释实验中发现的黑体辐射能量的频率分布,必须假设电磁场辐射只能以“量子”方式进行,即发射和吸收的能量只能是每个“量子”能量的整数倍。这是与经典力学中能量连续性不一样的革命性观念。由此, 爱因斯坦进一步明确提出光量子(或光子)的概念,认为辐射场是由光量子组成。光子与电子碰撞,其行为很象一个有特定能量和动量的实物粒子。由此可以很好地解释了光电效应:光照射到金属表面,只有当光的频率足够大时,电子才能克服表面的逸出功,脱离金属表面。爱因斯坦进一步应用能量的不连续性,成功地解释了固体比热在 T=0 度时的行为. 光波能量不连续的量子观念, 进一步启发玻尔对于卢瑟福原子有核模型的深刻研究。他认为,原子只能存在于分立的能量定态,辐射只能发生原子在两个定态之间跃迁。这个观点克服了经典理论对原子有核模型预言(绕核电子会由于电磁场辐损失能量、塌缩到原子核上)与现实原子基本稳定的矛盾,成功地解释了实验中总结出来的氢原子光谱 Rydberg—Ritz 组合公式。二. 物质波量子概念另一个重要方面是德布罗意物质波概念的引入。德布罗意把光的波粒二象性观点加以推广,认为一切微观粒子都具有波动性。一个动量为 p,能量为E 的自由的粒子,相当于一个波长为λ=h/p、频率为ω=E/h、沿粒子运动方向传播的平面波。许多实物粒子物质波的波长很短。例如,能量为 100 电子伏的电子, 其物质波波长仅为 0.12 纳米。 室温下氢原子的物质波波长更短, 仅为 0.021纳米。 1927 年,美国物理学家戴维逊和革末,在进行电子散射实验时,一次意外事故使他们观测到和 X 射线衍射类似的图像。同年,英国物理学家 G.P.汤姆逊完成了电子束穿过多晶薄膜的衍射实验。这些都证明了电子具有波动性。以后,物理学家还陆续证实中子、质子乃至原子、分子等等微观粒子都具有波动性。对于宏观物体而言,由于其物质波波长极短(远远小于宏观物体的尺度),其波动效应通常很难观察到的。三:不确定关系与互补(并协)原理在经典物理中,描述质点特征的几个物理量通常可以在任意精度内加以同时测量。当微观粒子表现为物质波,它的空间位置和动量是不能同时确定的,只会有不确定值?p 和?x。德国物理学家海森伯指出,动量和位置不能同时确定的程度,由普朗克常量 h 加以限定,具体结果表示为“不确定性关系”: ?p?x≥h/2。它量子理论描述的微观粒子最基本特征之一。对此物理上的一种直观的解释是海森伯提出的“测量干扰”的观念。例如,为了观测电子用光去照射它,要求观测得精确(即?x 越小),就得用波长短的光去照射电子;光子波长越短意味着光子动量越大,电子受到碰撞后其动量偏差?p 越大。在物质波的双缝干涉实验中,如果准确测量到粒子通过了哪一个缝,干涉条纹便不再存在了-发生量子退相干。玻尔认为,量子退相干根源在于互补性(并协)原理:物质存在着波粒二象性,但在同一个实验中波动性和粒子性是互相排斥的。知道粒子走哪一条缝,等于强调粒子性(只有“粒子”才具有确定位置,而波则弥散于整个空间)。根据互补性原理,波动性被排斥了,干涉条纹便消失了。对于量子退相干,通常也可以用海森伯“测量扰动”解释,但测量扰动并不是退相干唯一的根本原因。在不干扰冷原子空间运动的前提下, 1998 年的冷原子干涉实验利用内部状态记录了空间路径的信息(形成了原子束空间状态和内部状态的纠缠态),导致干涉条纹的消失。四:量子力学量子力学是描述微观世界运动的基本理论,它包括互为等价的矩阵力学和波动力学。为了发展玻尔思想,“以适用于更复杂的原子”, 1924 年,海森堡首先提出了革命性观点:在原子世界,每个可观察的实验结果(如氢原子谱线)总是与两个“玻尔轨道”有关,一个绝对的、由速度和坐标同时确定的轨道在描述原子的微观理论中是没有意义的。人们应当处处使用“两个轨道”来描述可观察的物理量。例如,原子的电磁辐射可以由电子坐标随时间的变化来描述,可能辐射的频率是其付里页展开式中出现的频率—Rydberg—Ritz 组合中有两个指标的实数。于是应当把坐标和动量等可观察物理量都看成具有两个指标元素的矩阵(或算符)。这时,坐标 Q 和动量 P 是不对易的,即 QP 不等于 PQ。在玻恩和约当的协作下,海森堡这个重要发现导致了矩阵力学的建立。它的诞生成功地克服了玻尔理论处理复杂原子时遇到的困难。量子力学另一表述-波动力学是薛定谔在 1924 年建立的。其核心是用满足薛定谔方程的时空点上的波函数描述粒子的运动。根据玻恩提出的几率解释,波函数的绝对值平方代表了电子在空间的几率分布。例如,原子中的电子可以用波函数描述,形成所谓的电子云。在波动力学中,原子的定态是薛定谔方程的本征态,相应的本征值就是原子的能级。原子的电磁辐射可描述为从一个能级到另外一个能级的跃迁。狄拉克通过建立表象理论,把矩阵力学和波动力学的描述完美地结合起来,而且把它推广到狭义相对论描述的高速运动情况,成功地预言了正电子的存在。反物质粒子的发现,把量子力学理论推上科学的顶峰。(本文中的文字内容转自孙昌璞院士的文章:什么是量子)
量子(quantum)是现代物理的重要概念。最早是M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍。后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。量子英文名称量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”。在物理学中常用到量子的概念,指一个不可分割的基本个体。例如,“光的量子”(光子)是光的单位。而延伸出的量子力学、量子光学等成为不同的专业研究领域。其基本概念为所有的有形性质是“可量子化的”。“量子化”指其物理量的数值是特定的,而不是任意值。例如,在原子中,电子的能量是可量子化的。这决定原子的稳定和一般问题。在20世纪的前半期,出现了新的概念。许多物理学家将量子力学视为了解和描述自然的的基本理论。
量子是一个物理概念,没有大小之分,量子的性质指其物理量的数值是特定的,而不是任意值。  量子(quantum)是现代物理的重要概念。最早是M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍。后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。  量子一词来自拉丁语quantum,意为“有多少”,代表“相当数量的某物质”。在物理学中常用到量子的概念,指一个不可分割的基本个体。例如,“光的量子”是光的单位。而延伸出的量子力学、量子光学等更成为不同的专业研究领域。  其基本概念为所有的有形物质是“可量子化的”。“量子化”指其物理量的数值是特定的,而不是任意值。例如,在(休息状态的)原子中,电子的能量是可量子化的。这决定原子的稳定和一般问题。  在20世纪的前半期,出现了新的概念。许多物理学家将量子力学视为了解和描述自然的的基本理论。在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。
量子可以理解为一份一份的粒子

文章TAG:量子力学是什么  sixology是什么意思  
下一篇