本文目录一览

1,统计学Rn什么意思

统计学中没有Rn,只有Rv顺序变量(rank variable):又称有序分类变量,观测结果表现为某种有序类别的变量。

统计学Rn什么意思

2,有序分类变量和等级变量有什么区别

这个有序多分类变量是自变量还是因变量啊?自变量的话看似然比检验,显著的话就不能当作数值型变量,而需要当作分类变量来做,转换成哑变量;因变量的话用multinomial logistic来做。

有序分类变量和等级变量有什么区别

3,用于有序分类变量资料的分析为什么

一.类  类变量序变量序变量两类 二.序类变量   序类变量(unordered categorical variable)指所类别或属性间程度顺序差别①二项类性别(男、)药物反应(阴性阳性)等;②项类血型(O、A、B、AB)职业(工、农、商、、兵)等于序类变量析应先按类别组清点各组观察单位数编制类变量频数表所资料序类资料亦称计数资料 三.序类变量   序类变量(ordinal categorical variable)各类别间程度差别尿糖化验结按-、±、+、++、+++类;疗效按治愈、显效、转、效类于序类变量应先按等级顺序组清点各组观察单位数编制序变量(各等级)频数表所资料称等级资料 变量类型变根据研究目需要各类变量间进行转化例血红蛋白量(g/L)原属数值变量若按血红蛋白与偏低两类按二项类资料析;若按重度贫血、度贫血、轻度贫血、、血红蛋白增高五等级按等级资料析亦类资料数量化病恶反应0、一、二、三表示则按数值变量资料(定量资料)
自变量是最初变动的量 因变量是由于自变量变动而引起变动的量

用于有序分类变量资料的分析为什么

4,分类变量究竟分为哪几类

1.分类 分类变量可分为无序变量和有序变量两类。 2.无序分类变量 无序分类变量(unordered categorical variable)是指所分类别或属性之间无程度和顺序的差别。,它又可分为①二项分类,如性别(男、女),药物反应(阴性和阳性)等;②多项分类,如血型(O、A、B、AB),职业(工、农、商、学、兵)等。对于无序分类变量的分析,应先按类别分组,清点各组的观察单位数,编制分类变量的频数表,所得资料为无序分类资料,亦称计数资料。 3.有序分类变量 有序分类变量(ordinal categorical variable)各类别之间有程度的差别。如尿糖化验结果按-、±、+、++、+++分类;疗效按治愈、显效、好转、无效分类。对于有序分类变量,应先按等级顺序分组,清点各组的观察单位个数,编制有序变量(各等级)的频数表,所得资料称为等级资料。 变量类型不是一成不变的,根据研究目的的需要,各类变量之间可以进行转化。例如血红蛋白量(g/L)原属数值变量,若按血红蛋白正常与偏低分为两类时,可按二项分类资料分析;若按重度贫血、中度贫血、轻度贫血、正常、血红蛋白增高分为五个等级时,可按等级资料分析。有时亦可将分类资料数量化,如可将病人的恶心反应以0、1、2、3表示,则可按数值变量资料(定量资料)分析。 来源:网络

5,categorical variables是什么意思

分类变量。拓展:1、分类变量是指地理位置、人口统计等方面的变量,其作用是将调查响应者分群。描述变量是描述某一个客户群与其他客户群的区别。大部分分类变量也就是描述变量。2、哑变量分类自变量的哑变量(dummy variables)编码来源:生物统计学论坛 在多重回归、Logistic回归模型中,自变量可以是连续型变量(interval variables),也可以是二项分类变量,和多分类变量。为了便于解释,对二项分类变量(如好坏、死活、发病不发病等)一般按0、1编码,一般0表示阴性或较轻情况,而1表示阳性或较严重情况。如果对二项分类变量按+1与-1编码,那么所得的logistic回归OR=exp(2beta),多重回归的beta同样增加一倍,容易造成错误的解释。因此建议尽量避免"+1"、"-1"编码形式。多分类变量又可分为有序(等级)或无序(也叫名义),如果是有序(ordinal)分类变量,一般可按对因变量影响由小到大的顺序编码为1、2、3、...,或按数据的自然大小,将它当作连续型变量处理。如果是无序的(nomial)分类变量,则需要采用哑变量(dummy variables)进行编码,下面以职业(J)为例加予以说明。 假如职业分类为工、农、商、学、兵5类,则可定义比分类数少1个,即5-1=4个哑变量3、类型变量类型不是一成不变的,根据研究目的的需要,各类变量之间可以进行转化。例如血红蛋白量(g/L)原属数值变量,若按血红蛋白正常与偏低分为两类时,可按二项分类资料分析;若按重度贫血、中度贫血、轻度贫血、正常、血红蛋白增高分为五个等级时,可按等级资料分析(资料是根据临床数据得出)。有时亦可将分类资料数量化,如可将病人的恶心反应以0、1、2、3表示,则可按数值变量资料(定量资料)分析。
绝对变数

6,如何使用spss软件做有序分类变量的Logistic回归分析

打开数据以后,菜单栏上依次点击:analyse--regression--binary logistic,打开二分回归对话框将因变量和自变量放入格子的列表里,如图所示,上面的是因变量,下面的是自变量,我们看到这里有三个自变量设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法,在前面的文章中有介绍,这里就不再熬述。点击ok,开始处理数据并检验回归方程,等待一会就会弹出数据结果窗口看到的第一个结果是对case的描述,第一个列表告诉你有多少数据参与的计算,有多少数据是缺省值;第二个列表告诉你因变量的编码方式,得分为1代表患病,得分为0代表没有患病这个列表告诉你在没有任何自变量进入以前,预测所有的case都是患病的正确率,正确率为%52.6下面这个列表告诉你在没有任何自变量进入以前,常数项的预测情况。B是没有引入自变量时常数项的估计值,SE它的标准误,Wald是对总体回归系数是否为0进行统计学检验的卡方。下面这个表格结果,通过sig值可以知道如果将模型外的各个变量纳入模型,则整个模型的拟合优度改变是否有统计学意义。 sig值小于0.05说明有统计学意义这个表格是对模型的全局检验,为似然比检验,供给出三个结果:同样sig值<0.05表明有统计学意义。下面的结果展示了-2log似然值和两个伪决定系数。两个伪决定系数反应的是自变量解释了因变量的变异占因变量的总变异的比例。他们俩的值不同因为使用的方法不同。分类表,这里展示了使用该回归方程对case进行分类,其准确度为%71.8。最后是输出回归方程中的各变量的系数和对系数的检验额值,sig值表明该系数是否具有统计学意义。到此,回归方程就求出来了。
这个有序多分类变量是自变量还是因变量啊?自变量的话看似然比检验,显著的话就不能当作数值型变量,而需要当作分类变量来做,转换成哑变量;因变量的话用multinomial logistic来做。
在分析——回归分析——曲线回归,选择logistic,就可以了

文章TAG:有序  分类  类变量  变量  有序分类变量  
下一篇