本文目录一览

1,紫外光谱红外光谱荧光光谱分别属于什么类型的光谱

红外光谱:  1、研究分子的结构和化学键,  2、力常数的测定和分子对称性的判据  3、表征和鉴别化学物种的方法。  ·  紫外:  1、测定物质的最大吸收波长和吸光度,  2、初步确定取代基团的种类,乃至结构。  紫外光谱只是一个初步的分析,还要借助其他方法如红外核磁质谱等,  仅靠紫外光谱就解析化合物结构式相当困难的。  ·

紫外光谱红外光谱荧光光谱分别属于什么类型的光谱

2,荧光光谱可以设计什么样的实验

荧光光谱的光谱测定。如果你是一位大学生,你可以到图书馆去借阅“大学物理实验”的书,里面有设计性实验,会有“紫外光与荧光光谱的测定”这一节,你可以参考下,与老师给定的器材与操作方法大致相同。
荧光(fluorescence):由多重度相同的状态间发生辐射跃迁产生的光,如s1→s0的跃迁。分子由激发态回到基态时,由于电子跃迁而由被激发分子发射的光。物质经过紫外线照射后发出荧光的现象可分为两种情况,第一种是自发荧光,如叶绿素、血红素等经紫外线照射后,能发出红色的荧光,称为自发荧光;第二种是诱发荧光,即物体经荧光染料染色后再通过紫外线照射发出荧光, 称为诱发荧光。 原子荧光 原子荧光光谱的产生 气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。原子荧光可分共振荧光、非共振荧光与敏化荧光等三种类型。

荧光光谱可以设计什么样的实验

3,原子荧光光谱与原子吸收光谱有什么不同啊

产生的方式不同。如果安照一般意义来讲,至少应该说是与原子发射光谱有有点相似吧。荧光会发出光,吸收光谱是把光谱中一部分波段的吸收掉。
吸收光谱:纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。许多宝石显示出在可见光谱中吸收带或线的特征样式,其完整的样式被称为"吸收光谱"。荧光光谱:气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。
原子荧光光谱是原子吸收辐射之后提高到激发态,再回到基态或临近基态的另一能态,将吸收的能量以辐射形式沿各个方向放出而产生的发射光谱。以sk-2003a为例,待测样品溶液和还原剂以专利技术连续流动进样技术进入多功能反应模块进行氢化反应,以压力自平衡方式自动排出废液,反应后的被测元素氢化物气体、氩气、氢气被传输至集扩式传输室充分混合后进入原子化器不稳定的氢化物分离得到被测元素的基态原子,被光源激发发出荧光,检测荧光强度得到样品浓度。

原子荧光光谱与原子吸收光谱有什么不同啊

4,荧光测试中激发光谱荧光光谱分别是什么作用

荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱.荧光发射光谱的形状与激发光的波长无关 .荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检测器上,亦即进行扫描,以荧光波长为横坐标,以荧光强度为纵坐标作图,即为荧光光谱,又称荧光发射光谱
激发是源荧光是果荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱.荧光发射光谱的形状与激发光的波长无关 .荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检测器上,亦即进行扫描,以荧光波长为横坐标,以荧光强度为纵坐标作图,即为荧光光谱,又称荧光发射光谱
激发光谱:表征什么波段的激发光对发光最有效。横坐标是发光光源的连续波长,纵坐标是发光强度。荧光光谱:激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检测器上,亦即进行扫描,以荧光波长为横坐标,以荧光强度为纵坐标作图,即为荧光光谱,又称荧光发射光谱
激发是源荧光是果

5,溶液的荧光光谱具有什么特征

溶液的荧光光谱具有什么特征材料发光原理 光照射在某些物质上时,基态分子吸收光后跃迁为激发态,激发态分子在因转动,振动等损失一部分激发能量后,以无辐射跃迁下降到低振动能级,再从低振动能级下降到基态,过程中激发态分子将以光的形式释放出能量,该光称为荧光。 影响辐射跃迁过程的不仅是该过程的初态和末态的能级位置和性质,在激发过程中涉及的其他能级及有关的非辐射过程也常对辐射跃迁过程有不同程度的影响。 进行辐射跃迁过程的实体是发光中心。若发光过程从吸收到发射光子都在一个中心进行,该发光中心称为分立发光中心。若作为发光中心的离子的外层电子受到晶体场的作用很强,以至在被激发后可以进入导带(空穴进入价带),被激发了的载流子重新复合而发光叫做复合发光。 半导体的发光主要是辐射复合发光,是光吸收的逆过程,因此通常与半导体的电子激发有关。这种激发是不稳定的,总要回到基态。同样半导体辐射复合发光何光跃迁也是相似的。 荧光分光是一种光致发光,利用氘灯的光作为激发,打在试样池上的试样上,然后用光电倍增管检测样品的荧光,在连接到计算机上进行分析处理。
溶液的荧光光谱具有什么特征材料发光原理 光照射在某些物质上时,基态分子吸收光后跃迁为激发态,激发态分子在因转动,振动等损失一部分激发能量后,以无辐射跃迁下降到低振动能级,再从低振动能级下降到基态,过程中激发态分子将以光的形式释放出能量,该光称为荧光。 影响辐射跃迁过程的不仅是该过程的初态和末态的能级位置和性质,在激发过程中涉及的其他能级及有关的非辐射过程也常对辐射跃迁过程有不同程度的影响。 进行辐射跃迁过程的实体是发光中心。若发光过程从吸收到发射光子都在一个中心进行,该发光中心称为分立发光中心。若作为发光中心的离子的外层电子受到晶体场的作用很强,以至在被激发后可以进入导带(空穴进入价带),被激发了的载流子重新复合而发光叫做复合发光。 半导体的发光主要是辐射复合发光,是光吸收的逆过程,因此通常与半导体的电子激发有关。这种激发是不稳定的,总要回到基态。同样半导体辐射复合发光何光跃迁也是相似的。 荧光分光是一种光致发光,利用氘灯的光作为激发,打在试样池上的试样上,然后用光电倍增管检测样品的荧光,在连接到计算机上进行分析处理。
光谱形状与激发波长无关 吸收峰与溶液浓度成正比关系

6,X射线荧光光谱仪分析原理

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放产生二次X射线(即X荧光),并且不同的元素所放射出的二次X射线(X荧光)具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线(X荧光)的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。 测出X荧光射线的波长或者能量,就可以知道元素的种类,这就是X荧光射线定性分析的基础。 此外,X荧光射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。
原子在收到电子束后者X射线的激发后,原子外层的电子会产生荧光光谱,一般是nm级别的。然后就是棱镜分光,检测器接受,根据接受信号强弱,分析含量。
x射线光电子能谱分析 x射线光电子能谱法(x-ray photoelectron spectrom-----xps)在表面分析领域中是一种崭新的方法。虽然用x射线照射固体材料并测量由此引起的电子动能的分布早在本世纪初就有报道,但当时可达到的分辩率还不足以观测到光电子能谱上的实际光峰。直到1958年,以siegbahn为首的一个瑞典研究小组首次观测到光峰现象,并发现此方法可以用来研究元素的种类及其化学状态,故而取名“化学分析光电子能谱(eletron spectroscopy for chemical analysis-esca)。目前xps和esca已公认为是同义词而不再加以区别。 xps的主要特点是它能在不太高的真空度下进行表面分析研究,这是其它方法都做不到的。当用电子束激发时,如用aes法,必须使用超高真空,以防止样品上形成碳的沉积物而掩盖被测表面。x射线比较柔和的特性使我们有可能在中等真空程度下对表面观察若干小时而不会影响测试结果。此外,化学位移效应也是xps法不同于其它方法的另一特点,即采用直观的化学认识即可解释xps中的化学位移,相比之下,在aes中解释起来就困难的多。 1 基本原理 用x射线照射固体时,由于光电效应,原子的某一能级的电子被击出物体之外,此电子称为光电子。 如果x射线光子的能量为hν,电子在该能级上的结合能为eb,射出固体后的动能为ec,则它们之间的关系为: hν=eb+ec+ws 式中ws为功函数,它表示固体中的束缚电子除克服各别原子核对它的吸引外,还必须克服整个晶体对它的吸引才能逸出样品表面,即电子逸出表面所做的功。上式可另表示为: eb=hν-ec-ws 可见,当入射x射线能量一定后,若测出功函数和电子的动能,即可求出电子的结合能。由于只有表面处的光电子才能从固体中逸出,因而测得的电子结合能必然反应了表面化学成份的情况。这正是光电子能谱仪的基本测试原理。

文章TAG:荧光  荧光光谱  光谱  紫外  荧光光谱  
下一篇