本文目录一览

1,边界元法中的全解析算法是什么意思

The boundary element method of the analytical algorithm
不明白啊 = =!

边界元法中的全解析算法是什么意思

2,介绍一本关于边界元学习的教材

这本书不错: 书 名: 边界元法  作 者:姚振汉 出版社: 高等教育出版社 出版时间: 2010年4月1日 ISBN: 9787040286090 开本: 16开 定价: 59.00元 《边界元法》内容简介:边界元法是在有限元法之后发展起来的一种精确高效的工程分析数值方法。经过近五十年的发展,它不仅在固体与结构分析领域成为有限元法最重要的一种补充,而且在微机电系统电磁场分析和大型结构电磁波散射分析等领域也得到广泛应用。   《边界元法》分为传统边界元法的基本内容和近年发展的快速多极边界元法等新进展两大部分。前七章包含了传统边界元法的基本内容,分为三个单元:前三章为数学力学基础部分,介绍各种问题边界积分方程的建立;第四、第五章为基本数值方法部分,包括分元离散,数值积分和方程求解,并结合二维问题介绍其程序实现;第六、第七章为几类应用专题,主要是含时间问题、几种非线性问题和反问题。   第八、第九章介绍快速多极边界元法和大规模快速多极边界元并行算法,第十二章介绍与边界积分方程相关的边界型无网格法。另外在第十、第十一两章简要介绍国际上边界元法比较成功的应用,包括在机械、结构工程中的应用,和声场、电磁场分析设计中的应用。   书中的内容多于48学时或32学时的课程能够讲授的内容,便于不同学校、不同专业的老师根据需要选讲部分内容,同时为研究生提供课外的补充学习材料。《边界元法》附带光盘,提供弹性力学平面问题的边界元法C++和Fonran源程序、一个三维位势问题的常规和快速边界元分析程序的执行文件,以及相应的考题和算例,供读者试用。   《边界元法》也可以作为有关教师和工程技术人员学习边界元法的参考书。

介绍一本关于边界元学习的教材

3,电解液的成分分析主要采用哪些方法

1.应用的技术手段:⑴调查、钻探、地球物理勘探和遥感技术;⑵各种观测和试验技术(水位、流量等的观测;抽水试验、示踪试验和弥散试验等);⑶各种地下水模拟技术(数值模拟用的较多);⑷同位素技术等。随着科学技术水平的不断提高,水文地质计算方法也不断发展。水文地质计算方法大致有:解析解法,物理模拟法,数值解法,系统分析方法,概率统计方法等等。解析解法60年代以前,解含水层地下水的水头和流量问题,多偏重于解析解法。如“地下水动力学”课程中所述,无论是以稳定流为基础的裘布衣公式,还是以非稳定流为基础的泰斯公式,它们的推导都有许多假设,在水文地质条件满足这些假设时,当然没有问题。但要解决大范围的地下水系统计算时,由于水文地质条件的复杂性,解析解法就无能为力了。物理模拟法物理模拟有电模拟、水力模拟、粘滞流模拟、薄膜模拟等等,以电模拟应用较多。早在本世纪的20年代,苏联的巴甫洛夫斯基提出了电解液模拟(arn A),它成为当时研究水工建筑物地区渗捕问题的重要手段。以后叉发展到电阻网模拟,在50年代和60年代,R-C网络和R-R阿络模拟也得到发展。60年代中期叉出现了与计算机结合在一起的混合机。数值解法60年代后期随着电子计算机的发展,人们把数值模拟应用到水文地质计算中来。由于电模拟制作和参数调试都比数值法麻烦,所以应用更多的是数值解法。在水文地质计算中应用的数值方法可大致归纳为5类。①有限差分法(简称有限差法);②有限单元法(简称有限元法);@边界单元法(简称边界元法);④特征线法}⑥有限分析法。有限差分法从60年代初就开始应用于水文地质计算。最初多用正规网格和松弛解法,1968年引入交替方向豫式差分法,以后又引入强隐式法,1973年被推广到变格距情况,兰马特f Lemard)于1D79年提出了上游加权有限拦分法。有限单元法从1968年开始应用于水史地质计算,1 972年弓1八等参数有限单元法,1977年休延康(Huyakorn)和尼尔康卡(lxlilkuka)等提出了上风有限单元法。有限差分法和有限单元法是水一_上地质汁箅中最常用的数值计算方法。边界单元法是70年代中期发展起来的一种新的数值方法。有限分析法是80年代发展起来的种新的数值计算方法。它也是一种区域离散方法,它是通过某种解析途径进行离散化,得到一一组方程,然后求得每一结点的水头近似值和进一步算出流量。其它方法系统分析方法,是结合数学模型及计算机技术米进行分析的一种方法,在地下水资源管理中得到迅速发展。许多国家,叮i在用此方法实行大规模和大范围的河水调用,以达到地下水和河水资源瓦相调剂,统一运行。系统方法叮以根据所在地区的气象、地质、地貌等自然地理条件与系统的关系以及经济、政治等社会环境条件,根据需要与可能,为该系统确定—个最优解。随机模型也在地下水资源管理中广泛应用。如时间序列分析,也开始应用于地下水计算中。随着计算机科学的发展,将使更多更新的方法应用于实际生产中去。

电解液的成分分析主要采用哪些方法

4,哪位大侠可以介绍一下边界元到底什么东东

CAE是计算机辅助工程CAD是计算机辅助设计有限元和边界元方法 主要研究偏微分方程的有限元和有限体积法以及边界积分方程的边界元法的构造`分析和实现,包括收敛性、超收敛性、后验误差控制和自适应性。同时也对区域分解、 多重网格和其它多尺度方法的分析、算法发展及应用进行研究。
CAD我知道,可是CAE???再看看别人怎么说的。
有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。参考资料:智造中国

5,除有限单元法外岩土工程常用到哪些数值方法并对比其优缺点 搜

岩土工程常用的数值方法包括:有限差分法、边界元法、离散元法、颗粒元法、不连续变形分析法、流形元法、模糊数学方法、概率论与可靠度分析方法、灰色系统理论、人工智能与专家系统、神经网络方法、时间序列分析法。 有限单元法的优缺点:有限单元法的理论基础是虚功原理和基于最小势能的变分原理,它将研究域离散化,对位移场和应力场的连续性进行物理近似。有限单元法适用性广泛,从理论上讲对任何问题都适用,但计算速度相对较慢。即,物理概念清晰、灵活、通用、计算速度叫慢。 有限差分法:该方法适合求解非线性大变形问题,在岩土力学计算中有广泛的应用。有限差分法和有限单元法都产生一组待解方程组。尽管这些方程是通过不同方式推导出来的,但两者产生的方程是一致。另外,有限单元程序通常要将单元矩阵组合成大型整体刚度矩阵,而有限差分则无需如此,因为它相对高效地在每个计算步重新生成有限差分方程。在有限单元法中,常采用隐式、矩阵解算方法,而有限差分法则通常采用“显式”、时间递步法解算代数方程。 边界元法:该方法的理论基础是Betti功互等定理和Kelvin基本解,它只要离散求解域的边界,因而得到离散代数方程组中的未知量也只是边界上的量。边界元法化微分方程为边界积分方程,离散划分少,可以考虑远场应力,有降低维数的优点,可以用较少的内存解决较大的问题,便于提高计算速度。 离散元法:离散元法的理论基础是牛顿第二定律并结合不同的本构关系,适用对非连续体如岩体问题求解。该方法利用岩体的断裂面进行网格划分,每个单元就是被断裂面切割的岩块,视岩块的运动主要受控于岩体节理系统。它采用显式求解的方法,按照块体运动、弱面产生变形,变形是接触区的滑动和转动,由牛顿定律、运动学方程求解,无需形成大型矩阵而直接按时步迭代求解,在求解过程中允许块体间开裂、错动,并可以脱离母体而下落。离散元法对破碎岩石工程,动态和准动态问题能给出较好解答。 颗粒元法:颗粒元方法是通过离散单元方法来模拟圆形颗粒介质的运动及其相互作用,它采用数值方法将物体分为有代表性的多个颗粒单元,通过颗粒间的相互作用来表达整个宏观物体的应力响应,从而利用局部的模拟结果来计算颗粒群群体的运动与应力场特征。 不连续变形分析方法:该方法是并行于有限单元法的一种方法,其不同之处是可以计算不连续面的错位、滑移、开裂和旋转等大位移的静力和动力问题。此方法在岩石力学中的应用备受关注。 流形元法;该方法是运用现代数学“流形”的有限覆盖技术所建立起来的一种新的数值方法。有限覆盖是由物理覆盖和数学覆盖所组成的,它可以处理连续和非连续的问题,在统一解决有限单元法、不连续变形分析法和其他数值方法的耦合计算方面,有重要的应用前景。 无单元法:该方法是一种不划分单元的数值计算方法,它采用滑动最小二乘法所产生的光滑函数去近似场函数,而且又保留了有限单元法的一些特点。它只要求结点处的信息,而不需要也没有单元的信息。无单元法可以求解具有复杂边界条件的边值问题,如开裂问题,只要加密离散点就可以跟踪裂缝的传播。它在解决岩石力学非线性、非连续问题等方面具有重要价值和发展前景。混合法:对于复杂工程问题,可采用混合法,即有限单元法、边界元法、离散元法等两两耦合来求解。 模糊数学方法:模糊理论用隶属函数代替确定论中的特征函数描述边界不清的过渡性问题,模糊模式识别和综合评判理论对多因素问题分析适用。 概率论与可靠度分析方法:运用概率论方法分析事件发生的概率,进行安全和可靠度评价。对岩土力学而言,包括岩石(土)的稳定性判断、强度预测预报、工程可靠度分析、顶板稳定性分析、地震研究、基础工程稳定性研究等。 灰色系统理论:以“灰色、灰关系、灰数”为特征,研究介于“黑色”和“白色”之间事件的特征,在社会科学及自然科学领域应用广泛。岩土力学中,用灰色系统理论进行岩体分类、滑坡发生时间预测、岩爆分析与预测、基础工程稳定性、工程结构分析,用灰色关联度分析岩土体稳定性因素主次关系等。 人工智能与专家系统:应用专家的知识进行知识处理、知识运用、搜索、不确定性推理分析复杂问题并给出合理的建议和决策。岩石力学中,可进行如岩土(石)分类、稳定性分析、支护设计、加固方案优化等研究。 神经网络方法:试图模拟人脑神经系统的组织方式来构成新型的信息处理系统,通过神经网络的学习、记忆和推理过程进行信息处理。岩石力学中,用于各种岩土力学参数分析、地应力处理、地压预测、岩土分类、稳定性评价与预测等。 时间序列分析法:通过对系统行为的涨落规律统计,用时间序列函数研究系统的动态力学行为。岩石力学中,用于矿压显现规律研究、岩石蠕变、岩石工程的位移、边坡和硐室稳定性等、基础工程中降水、开挖、沉降变形等与时间相关的问题。
支持一下感觉挺不错的

6,弹性力学的常用的数学方法

弹性力学中常用的数学方法可分分成两类:①精确解法 包括分离变量法和弹性力学的复变函数方法。弹性力学中的许多精确解是用分离变量法求得的。其步骤大致如下:根据物体的形状,选择一种合适的曲线坐标系,并写出相应于该坐标系的弹性力学微分方程和边界条件,如果微分方程中的变量能够分离,通常便可求得问题的解。能用分离变量法求得精确解的问题有:无限和半无限体的问题,球体和球壳的问题,椭球腔的问题,圆柱和圆盘的问题等。对于能化为平面调和函数或平面双调和函数的问题,复变函数方法是一个有效的求解工具《柱体的扭转和弯曲问题、平面应变和平面应力问题以及薄板弯曲问题中的许多重要精确解都是用复变函数法求得的。②近似解法 为求解一些复杂的问题,在弹性力学中还发展了许多近似解法,能量法就是其中用得最多的一类方法,它把弹性力学问题化为数学中的变分问题(泛函的极值和驻值问题),然后再用瑞利-里兹法求近似解。能量法的内容很丰富,适应性很强。工程界当前广泛使用的有限元法是能量法的一种新发展。差分法也是一种常用的近似解法,其要点是用差商近似地代替微商,从而把原有的微分方程近似地化为代数方程。此外,边界积分方程、边界元法和加权残数法对解决某些问题也是有效的手段。数学弹性力学的典型问题 有以下几类:①一般性理论 它探讨解的共性和一般性的求解方法。一般性理论中,最核心的部分是能量原理(定理),包括虚功原理(虚位移原理、虚应力原理)、功的互等定理、最小势能原理、最小余能原理、赫林格-瑞斯纳二类变量广义变分原理和胡海昌-鹫津久一郎三类变量广义变分原理等。解的存在性、唯一性、解析性、平均值定理以及近似解的收敛性等,也都和能量原理有密切联系。这些一般性理论,是建立各种近似解法和建立工程结构实用理论的依据。一般性理论的另一重要方面是未知函数的归并理论,其主要内容是将弹性力学问题归为求解少数几个函数,这些函数常称为应力函数和位移函数。②柱体扭转和弯曲 一个侧面不受外力的细长柱体,在两端面上的外力作用下会产生扭转和弯曲。根据圣维南原理,柱体中间部分的应力状态只与作用在端面上载荷的合力和合力矩有关,而与载荷的具体分布无关。因此,柱体中间部分的应力有以下的表达式: 这里的x、y轴为横截面的两个主轴;z轴平行于柱体的母线;为应力分量,A为横截面的面积;Ix和Iy为横截面对x轴和y轴的惯性矩(见截面的几何性质);N、Mx和My分别为作用在截面上的轴向合力、对x轴和y轴的弯矩。弯矩Mx、My是坐标z的线性函数,可用材料力学的方法求得。式(11)给出的与材料力学的解相同,但给出的剪应力比材料力学的结果精确。决定的问题最后可归为求解一个平面调和函数的边值问题。③平面问题 平面问题是弹性力学中发展得比较成熟,应用得比较广的一类问题。平面问题可分为平面应力问题和平面应变问题。两者的应用对象不同,但都可归为相同的数学问题——平面双调和函数的边值问题. 平面应力问题适用于薄板。若在薄板的两个表面上无外力,而在侧面上有沿厚度均匀分布的载荷(图1),则薄板中的位移和应力有如下特点: 且以及x、y方向的位移u、v都与坐标z无关。对于各向同性材料,上述五个不等于零的量可以用一个应力函数φ(x,y)(艾里应力函数)表示为: 而应力函数φ是一个平面双调和函数,即 平面应变问题适用于长柱体的中间部分。若柱体的两端面固定不动,而作用在侧面上的载荷和坐标z无关,且合力及合力矩等于零(图2),则柱体中间部分的应力和位移有如下特点: 纵向位移ω=0,且、u、v与坐标z无关。对于各向同性的材料,上述五个不等于零的量也可用一个双调和函数φ表示为公式(13),不过须将其中的E和v分别代以 ④变截面轴扭转变截面轴受扭时,在截面的过渡区(图3)常有应力集中现象。分析这类问题以取圆柱坐标系(r,θ,z)为方便。在圆柱坐标系中的位移分量和应力分量分别记为u、v、w和 这类问题的力学特点是: u=w=0和 v、和与坐标z无关。上述不等于零的两个剪应力和可用一个应力函数(r,z)表示为: 而满足下列偏微分方程: 这类问题最后归为方程(15)的边值问题。 ⑤回转体的轴对称变形各向同性的回转体在轴对称载荷作用下,必然产生轴对称的变形。在圆柱坐标系(r,θ,z)中,轴对称变形的特点是:v=0,=,且u、w、、、和与坐标θ无关。上述不等于零的六个量,可以用一个位移函数(x,y)表示为: 其中△是轴对称的拉昔拉斯算符,即 而是轴对称的双调和函数,即 ⑥工程结构元件的实用理论 从广义上说,各种工程结构元件的实用理论(如杆、板、壳的实用理论)都是弹性力学的特殊分支,而且是最有实用价值的分支。这些实用理论分别依据结构元件形状及其受力的特点,对位移分布作一些合理的简化假设,对广义胡克定律也作相应的简化。这样,就能使数学方程既得到充分简化又保留了主要的力学特性。从弹性力学看,这些结构元件的实用理论都是近似理论,其近似性大多表现为按照这些理论计算得到的应力和应变不能严格满足胡克定律。

文章TAG:边界元法  边界元法中的全解析算法是什么意思  
下一篇