直接序列扩频,扩频通信的实现方法现在主要采用的扩频有哪些
来源:整理 编辑:智能门户 2023-08-25 17:55:03
本文目录一览
1,扩频通信的实现方法现在主要采用的扩频有哪些
目前常用的扩频通信实现方法主要有: 直接序列扩频( Direct Sequence Spread Spectrum)、跳频(Frequency Hopping)、跳时(Time Hopping)、宽带线性调频(Chip Modulation)等方式。以上方法中最常用的是直接序列扩频和跳频。
2,扩频通信技术的基本工作方式
实现扩频通信的基本工作方式有4种:
1.直接序列扩频(Direct Sequence Spread Spectrum)工作方式(简称DSSS方式);
2.跳变频率(Frequency Hopping)工作方式(简称FH方式);
3.跳变时间(Time Hopping)工作方式(简称TH方式);
4.线性调频(Chirp Modulation)工作方式(简称Chirp方式)。目前使用最多、最典型的扩频工作方式是直扩式(DSSS方式),在无线网络的通信中,就是采用这种方式工作的。

3,无线传感网络中若同时使用csmaca与直接序列扩频技术是不是重复了
不重复,它们的功能是不同的 CSMA/CA 是用来传输数据时避免冲突拥塞的。CSMA/CA协议的工作流程分为两个分别是: 1.送出数据前,监听媒体状态,等没有人使用媒体,维持一段时间后,再等待一段随机的时间后依然没有人使用,才送出数据。由於每个设备采用的随机时间不同,所以可以减少冲突的机会。 2.送出数据前,先送一段小小的请求传送报文(RTS : Request to Send)给目标端,等待目标端回应 CTS: Clear to Send 报文后,才开始传送。 利用RTS-CTS握手(handshake)程序,确保接下来传送资料时,不会被碰撞。 同时由於RTS-CTS封包都很小,让传送的无效开销变小。 CSMA/CA通过这两种方式来提供无线的共享访问,这种显式的ACK机制在处理无线问题时非常有效。然而不管是对于802.11还是802.3来说,这种方式都增加了额外的负担,所以802.11网络和类似的Ethernet网比较总是在性能上稍逊一筹。直接序列扩频(Direct Sequence Spread Spectrum)工作方式,简称直扩方式(DS方式)。就是用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。 直接序列扩频方式是直接用伪噪声序列对载波进行调制,要传送的数据信息需要经过信道编码后,与伪噪声序列进行模2和生成复合码去调制载波。
4,DSSSBPSK什么意思
直接序列扩频(英文简称DSSS)通信具有频谱宽、工作信噪比低、抗干扰和抗多径效应能力强、可实现码分多址、低截获和低检测概率等特点。正日益取代常规通信而广泛应用于现代军事和商用通信系统中,如码分多址(CDMA)通信、全球定位系统(GPS)、测控、卫星链路和敌我识别等。因此,与之对应的直扩通信对抗技术也就成了通信对抗领域亟待解决的问题。 针对受强高斯噪声污染的DSSS/BPSK信号对抗技术中的盲参数估计问题,本文着重研究了平方倍频法、时域自相关法、延迟相乘法三种常规的单参数估计法以及四阶累积量2-D切片多参数估计法。主要内容如下: 1.分析了侦察用平方倍频法载频估计的原理及其不易实现低信噪比下估计的原因。为获得更低的信噪比容限,提出了在平方倍频处理后端加入频谱集平均技术和互相关积累技术的若干改进方法,成功实现更低信噪比下的估计。 2.研究了时域自相关法码周期估计原理。在分析时域自相关法相关峰出现机理的基础上,将该法与相关域迭加平均技术结合,既平滑了噪声又使各延迟时间为扩频码整数倍周期处均出现相关峰,实现了更低信噪比下的码周期估计。 3.研究了传统延迟相乘法码速率估计原理。传统的延迟相乘法研究对象是基带信号的延迟相乘输出,或中频信号延迟相乘输出的基带部分。分析发现,中频信号延迟相乘输出包括基带部分和中频部分,基带部分的功率谱包含码速率信息,中频部分的功率谱包含2倍载频信息。将传统的延迟相乘法发展成为多参数估计法,并利用功率谱集平均技术降低了估计的信噪比容限。 4.分析了四阶累积量2-D切片法载频和码周期估计原理。该法处理输出的频谱包含宽带成分导致其载频估计能力较差。修正的四阶累积量法将该宽带成分去掉,有效增强了载频估计能力。采用改进时域自相关法码周期估计的相同逻辑,结合迭加平均技术后该法能够实现更低信噪比下的码周期估计。 最后,通过大量的仿真实验,掌握了各方法的估计性能,验证了改进方法的有效性,并按待估参数的不同对各传统方法及其改进法进行了分类比较
5,CDMA扩频通信原理
扩展频谱通信的定义 所谓扩展频谱通信,可简单表述 如下:“扩频通信技术是一种信 息传输方 式,其信号所占有的频带宽度远 大于所传信息必需的最小带宽; 频带的扩展是通过一个独立的码 序列来完成,用编码及调制的方 法来实现的,与所传信息数据无 关;在接收端则用同样的码进行 相关同步接收、解扩及恢复所传 信息数据”。 这一定义包含了以下三方面的意 思: 一、信号的频谱被展宽了。 我们知道,传输任何信息都需要 一定的带宽,称为信息带宽。 例如人类的语音的信息带宽为 300Hz --- 3400Hz,电视图像信 息带宽为数MHz。为了充分利用 频率资源,通常都是尽量采用大 体相当的带宽的信号来传输信 息。在无线电通信中射频信号的 带宽与所传信息的带宽是相比拟 的。如用调幅信号来传送语音信 息,其带宽为语音信息带宽的两 倍;电视广播射频信号带宽也只 是其视频信号带宽的一倍多。这 些都属于窄带通信。 一般的调频信号,或脉冲编码调 制信号,它们的带宽与信息带宽 之比也只有几到十几。扩展频谱 通信信号带宽与信息带宽之比则 高达100 --- 1000,属于宽带通 信。 为什么要用这样宽的频带的信号 来传输信息呢? 这样岂不太浪费 宝贵的频率资源了吗? 二、采用扩频码序列调制的方式 来展宽信号频谱。 我们知道,在时间上有限的信 号,其频谱是无限的。例如很窄 的脉冲信号,其频谱则很宽。信 号的频带宽度与其持续时间近似 成反比。1微秒的脉冲的带宽约 为1MHz。因此,如果用限窄的脉 冲序列被所传信息调制,则可产 生很宽频带的信号。 如下面介绍的直接序列扩频系统 就是采用这种方法获得扩频信 号。这种很窄的脉冲码序列,其 码速率是很高的,称为扩频码序 列。这里需要说明的一点是所采 用的扩频码序列与所传信息数据 是无关的,也就是说它与一般的 正弦载波信号一样,丝毫不影响 信息传输的透明性。扩频码序列 仅仅起扩展信号频谱的作用。 三、在接收端用相关解调来解扩 正如在一般的窄带通信中,已调 信号在接收端都要进行解调来恢 复所传的信息。 在扩频通信中接 收端则用与发送端相同的扩频码 序列与收到的扩频信号进行相关 解调,恢复所传的信息。换句话 说,这种相关解调起到解扩的作 用。即把扩展以后的信号又恢复 成原来所传的信息。这种在发端 把窄带信息扩展成宽带信号,而 在收端又将其解扩成窄带信息的 处理过程,会带来一系列好处。 弄清楚扩频和解扩处理过程的机 制,是理解扩频通信本质的关键 所在。
6,扩频的简介
在发端输入的信息先经信息调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱。展宽后的信号再调制到射频发送出去。 在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩。再经信息解调、恢复成原始信息输出。由此可见,—般的扩频通信系统都要进行三次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,扩频通信就是多了扩频调制和解扩部分。 发送端1)发送端输入的信息经过信息调制形成数字信号。2)由扩频码发生器产生的扩频码序列对数字信号进行扩展频谱。3)射频发生器数字信号转换成模拟信号,并通过射频信号发送出去。 接收端1)在接收端,将收到的射频信号由高频变频至电子器件可以处理的中频,并把模拟信号转化成数字信号。2)由扩频码发生器产生的和发送端相同的扩频码对数字信号进行解扩。3)将数字信号解调成原始信息输出。 直接序列扩频(Direct Sequence Spread Spectrum)工作方式,简称直扩(DS)方式。所谓直接序列(DS-DirectSequency)扩频,就是直接用具有高码率的扩频码序列在发端去扩展信号的频谱。而在收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。直接序列扩频的原理如图所示。用窄脉冲序列对某一载波进行二相相移键控调制。如果采用平衡调制器,则调制后的输出为二相相移键控信号,它相当于载波抑制的调幅双边带信号。图中输入载波信号的频率为fc,窄脉冲序列的频谱函数为G(C),它具有很宽的频带。平衡调制器的输出则为两倍脉冲频谱宽度,而fc被抑制的双边带的展宽了的扩频信号,其频谱函数为fc+G(C)。在接收端应用相同的平衡调制器作为解扩器。可将频谱为fc+G(C)的扩频信号,用相同的码序列进行再调制,将其恢复成原始的载波信号fc。 跳频扩频(Frequency Hopping Spread Spectrum)工作方式,简称跳频(FH)方式。所谓跳频,比较确切的意思是:用一定码序列进行选择的多频率频移键控。也就是说,用扩频码序列去进行频移键控调制,使载波频率不断地跳变,所以称为跳频。简单的频移键控如2FSK,只有两个频率,分别代表传号和空号。而跳频系统则有几个、几十个、甚至上干个频率、由所传信息与扩频码的组合去进行选择控制,不断跳变。右图为跳频的原理示意图。发端信息码序列与扩频码序列组合以后按照不同的码字去控制频率合成器。 跳时扩频(Time Hopping Spread Spectrum)工作方式,简称跳时(TH)方式。与跳频相似,跳时(TH-TimeHopping)是使发射信号在时间轴上跳变。首先把时间轴分成许多时片。在一帧内哪个时片发射信号由扩频码序列去进行控制。可以把跳时理解为:用一定码序列进行选择的多时片的时移键控。由于采用了窄得很多的时片去发送信号,相对说来,信号的频谱也就展宽了。右图是跳时系统的原理方框图。在发端,输入的数据先存储起来,由扩频码发生器的扩频码序列去控制通-断开关,经二相或四相调制后再经射频调制后发射。在收端,由射频接收机输出的中频信号经本地产生的与发端相同的扩频码序列控制通-断开关,再经二相或四相解调器,送到数据存储器和再定时后输出数据。只要收发两端在时间上严格同步进行,就能正确地恢复原始数据。 线性调频(ChirpModulation)工作方式,简称Chirp方式。如果发射的射频脉冲信号在一个周期内,其载频的频率作线性变化,则称为线性调频。因为其频率在较宽的领带内变化,信号的频带也被展宽了。这种扩频调制方式主要用在雷达中,但在通信中也有应用。右图中是线性调频的示意图。发端有一锯齿波去调制压控振荡器,从而产生线性调频脉冲。它和扫频信号发生器产生的信号一样。在收端,线性调频脉冲由匹配滤波器对其进行压缩,把能量集中在一个很短的时间内输出,从而提高了信噪比,获得了处理增益。匹配滤波器可采用色散延迟线,它是一个存储和累加器件。其作用机理是对不同频率的延迟时间不一样。如果使脉冲前后两端的频率经不同的延迟后一同输出,则匹配滤波器起到了脉冲压缩和能量集中的作用。匹配滤波器输出信噪比的改善是脉冲宽度与调频频偏乘积的函数。一般,线性调频在通信中很少应用。 在上述几种基本的扩频方式的基础上,可以组合起来,构成各种混合方式。例如DS/FH、DS/TH、DS/FH/TH等等。一般说来,采用混合方式看起来在技术上要复杂一些,实现起来也要困难一些。但是,不同方式结合起来的优点是有时能得到只用其中一种方式得不到的特性。例如DS/FH系统,就是一种中心频率在某一领带内跳变的直接序列扩频系统。其信号的频谱如图所示。对于DS/TH方式,它相当于在扩频方式中加上时间复用。采用这种方式可以容纳更多的用户。在实现上,DS本身已有严格的收发两端扩频码的同步。加上跳时,只不过增加了一个通-断开关,并不增加太多技术上的复杂性。对于DS/FH/TH,它把三种扩频方式组合在一起,在技术实现上肯定是很复杂的。但是对于一个有多种功能要求的系统,DS、FH、TH可分别实现各自独特的功能。因此,对于需要同时解决诸如抗干扰、多址组网、定时定位、抗多径和远-近问题时,就不得不同时采用多种扩频方式。
文章TAG:
直接序列扩频 扩频通信的实现方法现在主要采用的扩频有哪些