本文目录一览

1,黎曼猜想究竟是什么

具体概述关于黎曼-希尔伯特问题是:具有给定单值群的线性微分方程的存在性证明。即:关于素数的方程的所有有意义的解都在一条直线上。

黎曼猜想究竟是什么

2,黎曼猜想具体指的是什么

黎曼猜想是一个困扰数学界多年的难题,最早由德国数学家波恩哈德·黎曼提出,迄今为止仍未有人给出一个令人完全信服的合理证明。即如何证明“关于素数的方程的所有意义的解都在一条直线上”。

黎曼猜想具体指的是什么

3,黎曼猜想是什么

关于黎曼ζ函数ζ(s)的零点分布的猜想,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态,方程ζ(s)=0的所有有意义的解都在一条直线上。黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。素数又称质数。质数是像2、5、19、137那样除了1和自身以外不能被其他正整数整除的数。这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的乘积。从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。质数的定义简单得可以在中学甚至小学课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。

黎曼猜想是什么

4,黎曼猜想是什么

关于黎曼ζ函数ζ(s)的零点分布的猜想,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态,方程ζ(s)=0的所有有意义的解都在一条直线上。黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。素数又称质数。质数是像2、5、19、137那样除了1和自身以外不能被其他正整数整除的数。这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的乘积。从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。质数的定义简单得可以在中学甚至小学课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。

5,什么是黎曼猜想急

黎曼猜想 这是1859年由德国大数学家黎曼提出的几个猜想之一,而其他猜想均已证明。这个猜想是指黎曼 函数:的非平凡零点都在 的直线上。 在数学中我们碰到过许多函数,最常见的是多项式和三角函数。多项式 的零点也就是代数方程 =0的根。根据代数基本定理,n次代数方程有n个根,它们可以是实根也可以是复根。因此,多项式函数有两种表示方法,即 当s为大于1的实数时, 为收敛的无穷级数,欧拉仿照多项式情形把它表示为乘积的情形,这时是无穷乘积,而且也不是零点的形式: 但是,这样的 用处不大,黎曼把它开拓到整个复数平面,成为复变量s就包含非常多的信息。正如多项式的情形一样,函数的信息大部分包含在其零点的信息当中,因此, 的零点就成为大家关心的头等大事。 有两类零点,一类是s=-2,-4,…-2n,…时的实零点,称为平凡零点;一类是复零点。黎曼猜想就是讲,这些复零点的实部都是,也就是所有复零点都在 这条直线(后称为临界线)上。 这个看起来简单的问题并不容易。从历史上看,求多项式的的零点特别是求代数方程的复根都不是简单的问题。一个特殊函数的零点也不太容易找到。在85年前,哈代首先证明这条临界线上有无穷多个零点。10年前我们知道有2/5的复零点都在这条线上,而且这条线外至今也没有发现复零点,因此,黎曼猜想是对是错还在未定之中。 这个简单的特殊函数在数学上有重大意义,正因为如此,黎曼猜想总是被当成数一数二的重要猜想。在这个猜想上稍有突破,就有不少重大成果。200年前高斯提出的素数定理就是在100年前由于黎曼猜想的一个重大突破而证明的。当时只是证明复零点都在临界线附近,如果黎曼猜想被完全证明,整个解析数论将取得全面进展。 更重要的是,在代数数论、代数几何、微分几何、动力系统理论等学科中都引入各种 函数和它们的推广L函数,它们各有相应的“黎曼猜想”,其中有的黎曼猜想已经得到证明,使得该分支获得突破性的进展。可以设想,黎曼猜想及其各种推广是21世纪的中心的问题之一。

6,黎曼假设黎曼猜想是什么

黎曼猜想,即素数的分布最终归结为所谓的黎曼ζ函数的零点问题。 黎曼在1859年在论文《在给定大小之下的素数个数》中做出这样的猜想:ζ(z)函数位于0≤x≤1之间的全部零点都在rez=1/2之上,即零点的实部都是1/2,这至今仍是未解决的问题。 黎曼猜想是说:   素数在自然数中的分布问题在纯粹数学和应用数学上都是很重要的问题。素数在自然数域中分布并没有一定规则。黎曼(1826--1866)发现素数出现的频率与所谓黎曼ζ函数紧密相关。黎曼ζ函数的非平凡零点都在线 \operatorname z = \frac 上。   1901年 koch 指出,黎曼猜想与叙述 \pi \left( x \right) = \operatorname x + o\left( {\sqrt x \ln x} \right) 等价。   现在已经验证了最初的1,500,000,000个解,猜想都是正确的。但是否对所有解是正确的,却没有证明,随着费马最后定理的获证,黎曼猜想作为最困难的数学问题的地位更加突出。   黎曼假设、庞加莱猜想、霍奇猜想、波奇和斯温纳顿―戴尔猜想、纳威厄―斯托克斯方程、杨―米尔理论、p对np问题被称为21世纪七大数学难题。2000年,美国克雷数学研究所将它们设为“千年大奖问题”,每个难题悬赏100万美元征求证明。   专家指出,黎曼假设一旦被攻克,将对加密学有帮助。其余的难题一旦破解,将会给航天、物理等领域带来突破性进展,并开辟全新的数学研究领域。 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
利用广义Riemann假设再加上Hardy-Littlewood圆法可以基本证明关于奇数的Goldbach猜想,但我个人觉得Riemann假设不大可能推出Goldbach猜想,因为如果你看过解析数论方面的文献的话就会发现利用Riemann假设导出关于阶估计的的结果一般来说都要比Goldbach猜想成立时要求的阶要弱。

文章TAG:黎曼猜想  黎曼猜想究竟是什么  
下一篇