本文目录一览

1,欧拉函数是什么

请看图片:

欧拉函数是什么

2,数论中的Euler定理是什么

>=根号(n/2) 可以把n表示成p1^a1 *p2^a2*……pm^am pi表示不同的质数 f(n)=n*(1-1/p1)……(1-1/pm) 剩下的思路 你试试吧

数论中的Euler定理是什么

3,关于Euler数

http://baike.baidu.com/view/296190.htm http://emuch.net/journal/article.php?id=CJFDTotal-GKSX1990Z1041 http://www.cqvip.com/qk/97624A/200503/21352550.html

关于Euler数

4,什么是欧拉常数

调和级数∞∑(1/n)n=1是发散的,而极限 nlim [∑ (1/k)-ln n]n→∞ k=1却是收敛的,将该极限值称为欧拉(EULER)常数γ,近似计算γ=0.5772156.......(人家问的是欧拉常数,不是欧拉数啊)
目前尚不知道欧拉常数是否为有理数,但是分析表明如果它是一个有理数,那么它的分母位数将超过10242080

5,Euler函数是

(Leonhard Euler 公元1707-1783年)也有翻译为欧勒,18世纪最优秀的数学家,也是历史上最伟大的数学家之一,被称为“分析的化身”。
Euler即欧拉。欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。 欧拉证明了下面这个式子:   如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有   φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm

6,欧拉公式是什么

欧拉公式  (Euler公式)   在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做   欧拉公式,它们分散在各个数学分支之中。   (1)分式里的欧拉公式:   a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)   当r=0,1时式子的值为0   当r=2时值为1   当r=3时值为a+b+c   (2)复变函数论里的欧拉公式:   e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。   它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。   将公式里的x换成-x,得到:   e^-ix=cosx-isinx,然后采用两式相加减的方法得到:   sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.   这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:   e^i∏+1=0.   这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。   (3)三角形中的欧拉公式:   设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:   d^2=R^2-2Rr   (4)拓扑学里的欧拉公式:   V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。   如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。   X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。   (5)初等数论里的欧拉公式:   欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。   欧拉证明了下面这个式子:   如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有   φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)   利用容斥原理可以证明它。   此外还有很多著名定理都以欧拉的名字命名。
就是有个叫欧拉公的人
欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来; 拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。 此外还包括其他一些欧拉公式,比如分式公式等等

文章TAG:euler  欧拉  欧拉函数  函数  Euler  
下一篇