1,储氢材料的介绍

储氢材料(hydrogen storage material)一类能可逆地吸收和释放氢气的材料。最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。

储氢材料的介绍

2,怎样储存氢气

现在有一种储氢材料能大量吸附氢气,用时释放氢气,便于储存、运输和携带。这种材料才被发现不久,还没有普及使用,正在不断的研究和修改中,相信不久后,能在氢能汽车上派上用场
人就是一个 储存氧气瓶啊
压缩储存吧

怎样储存氢气

3,怎样保存氢气

保存氢气方法很多,但是高效的储氢方法没有主要方法有:液化储氢(成本太高,而且需要很高的能量维持其液化);压缩储氢(重量密度和体积密度都很低);金属氢化物储氢(体积存储密度较高,但是重量密度低),还有一个是现在正在研究的碳纳米管吸附储氢(已经证明在室温和不到1bar(约一个大气压)的压力下,单壁碳管可以吸附5%-10%,多壁碳纳米管储氢可达14%,但是这些报道都受到了质疑,原因是目前尚未建立一个世界上公认的检测碳纳米管储氢的检测标准)目前根据理论推算和反复验证,大家普遍认为可逆储/放氢量在5%(质量密度百分比)左右,但是即使是只有5%也是迄今为止最好的储氢材料!这是我上纳米材料课上老师的笔记,打得好累...

怎样保存氢气

4,怎样保存氢气

暂时保存:集气瓶盖上毛玻璃,口向下保存长时间保存:常温高压液化,储存在钢瓶内
保存氢气方法很多,但是高效的储氢方法没有主要方法有:液化储氢(成本太高,而且需要很高的能量维持其液化);压缩储氢(重量密度和体积密度都很低);金属氢化物储氢(体积存储密度较高,但是重量密度低),还有一个是现在正在研究的碳纳米管吸附储氢(已经证明在室温和不到1bar(约一个大气压)的压力下,单壁碳管可以吸附5%-10%,多壁碳纳米管储氢可达14%,但是这些报道都受到了质疑,原因是目前尚未建立一个世界上公认的检测碳纳米管储氢的检测标准)目前根据理论推算和反复验证,大家普遍认为可逆储/放氢量在5%(质量密度百分比)左右,但是即使是只有5%也是迄今为止最好的储氢材料!这是我上纳米材料课上老师的笔记,打得好累...
少量放入瓶口朝下的集气瓶中大量密封钢瓶
开发出清材料,和上面的(
口朝下保存 因为H2密度比空气小
绝对密封!

5,储氢金属有哪些

液氢、氢气的密度小,对储氢来说是不利的因素。将氢气压缩到1.51×107Pa一个40L的钢瓶中只能装0.5kg;将氢气压缩为液氢,耗能差不多相当于其燃烧能的1/3~1/4。不仅耗能高,而且不安全。此时,高压钢瓶的爆炸威力相当于一颗重磅炸弹。当年装液氢的贮罐车首次在美国公路上行驶时,前后都用红色吉普车来“保驾”。因此,对于一种广泛使用的燃料来说,必须寻找一种更为理想的固态储运方法。金属储氢法我们知道,固体金属表面性质与它的体相性质是不同的。体相内的原子四周都有另外的原子包围着,而表面上的原子至少有一侧是空着的,这样就产生了一个向内拉的剩余力场,使金属固体表面有一种表面能(见图2)[8]。这种剩余力场能对固体表面的气体分子产生吸引力,以降低固体表面能,使体系趋于较为稳定。所谓金属储氢法指某些金属或合金,例如矾V、铌Nb、钛Ti、镁Mg、镧La、锆Zr等,因其表面的催化或活性作用能将氢气分子分解为氢原子而进入金属点阵内部。这一现象是60年代末由荷兰科学家首次发现的。在固态金属中,金属与氢通过化合键而结合,形成了金属氢化物。如VH2、NbH2、TiH2、MgH2等。但近年来发现某些合金氢化物比较理想,通常能在室温下使用。这类合金氢化物一般至少含一种与氢亲和力强的元素和一种亲和力略弱的元素,如二元合金氢化物LaNi5、TiFeH1·9,三、四元合金氢化物TiFe0·85Mn0·15H1·9TiFe0·8Ni0·15V0·05H1·6等金属储氢好比是海绵吸水一般,根据需要可逆地加氢和脱氢:

6,无机化合物储氢材料特点

特点:1、活化容易;2、平衡压力适中且平坦,吸放氢平衡压差小;3、抗杂质气体中毒性能好;4、适合室温操作。储氢材料一类能可逆地吸收和释放氢气的材料。最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。不同储氢方式的比较:1、气态储氢气态储氢的 缺点:能量密度低;不太安全2、液态储氢液态储氢的缺点: 能耗高;对储罐绝热性能要求高3、固态储氢固态储氢的优点:体积储氢容量高;无需高压及隔热容器;安全性好,无爆炸危险;可得到高纯氢,提高氢的附加值。常见储氢材料:目前储氢材料有金属氢化物、碳纤维碳纳米管、非碳纳米管、玻璃储氢微球、络合物储氢材料以及有机液体氢化物。下面仅就合金、有机液体以及纳米储氢材料三个方面对储氢材料加以介绍。1、合金储氢材料储氢合金是指在一定温度和氢气压力下,能可逆的大量吸收、储存和释放氢气的金属间化合物,其原理是金属与氢形成诸如离子型化合物、共价型金属氢化物、金属相氢化物-金属间化合物等结合物,并在一定条件下能将氢释放出来。2、液态有机物储氢材料有机液体氢化物贮氢是借助不饱和液体有机物与氢的一对可逆反应, 即加氢和脱氢反应来实现的。加氢反应时贮氢,脱氢反应时放氢, 有机液体作为氢载体达到贮存和输送氢的目的。3、纳米储氢材料纳米储氢材料分为两种方式,一种是将原有的储氢材料纳米化,还有一种就是开发新的纳米材料作为储氢材料。储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量;(2)纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定。金属氢化物能够大量生成,单位体积吸纳的氢的质量明显大于宏观颗粒;(3)纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子,有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。;(4)晶粒的细化使其硬度增加,贮氢合金的整体强度随晶粒尺寸的增加而增强,这对于抗酸碱及抗循环充放粉化,以及抵抗充放电形成的氧压对贮氢基体的冲击大有裨益,并且显著提高了贮氢合金耐腐蚀性。

文章TAG:储氢材料  材料  介绍  储氢  
下一篇