1,电路基础题为什么电路原本会处于临界阻尼状态

这说明电路原本恰好满足临界阻尼的条件吧,因为临界阻尼的条件是很严格的。

电路基础题为什么电路原本会处于临界阻尼状态

2,实验中如何判断弱阻尼临界阻尼和过阻尼状态简述理由

直接到达平衡点无振动,且到达时间较长为过阻尼。到达平衡点后还有振动为弱阻尼。是不是临界阻尼很难判断,因为以最短时间到达平衡点且无振动才是临界阻尼。
不明白啊 = =!

实验中如何判断弱阻尼临界阻尼和过阻尼状态简述理由

3,为什么临界阻尼比大于1体系不振动

同问。。。
那你要清楚临界阻尼的来龙去脉:由运动方程解出系统的极点是一个复数,包含实部和虚部,其中实部是系统的衰减因子(阻尼因子),而虚部是系统的振动频率。而临界阻尼的定义是:使虚部恰好=0时的阻尼值,大于临界阻尼,极点没有虚部(即频率为零),因此不发生振动。

为什么临界阻尼比大于1体系不振动

4,什么是临界

指什么临界?先解释几个吧:1.热力学临界点是可使一物质以液态存在的最低压力及最高温度,也说是物质的液态及气态开始无法区分的压力及温度。其压力及温度也称为临界压力及临界温度。物质超过临界点后会呈现超临界流体的特性。2.临界阻尼:当ζ = 1时,的解为一对重实根,此时系统的阻尼形式称为临界阻尼。现实生活中,许多大楼内房间或卫生间的门上在装备自动关门的扭转弹簧的同时,都相应地装有阻尼铰链,使得门的阻尼接近临界阻尼,这样人们关门或门被风吹动时就不会造成太大的声响。3.估计你要的是这个,宇宙膨胀的临界:弗里德曼方程是广义相对论框架下描述空间上均一且各向同性的膨胀宇宙模型的一组方程。它们最早由亚历山大·弗里德曼在1922年得出,他通过在弗里德曼-勒梅特-罗伯逊-沃尔克度规下对具有给定质量密度和压力的流体的能量-动量张量应用爱因斯坦引力场方程而得到。而具有负的空间曲率的方程则由弗里德曼在1924年得到。
火电厂超超临界机组和超临界机组指的是锅炉内工质的压力。锅炉内的工质都是水,水的临界压力是:22.115mpa 347.15^c ;在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31 mpa被称为超超临界。 超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率要提高1.2%,一年就可节约6000吨优质煤。未来火电建设将主要是发展高效率高参数的超临界(sc)和超超临界(usc)火电机组,它们在发达国家已得到广泛的研究和应用。

5,求问什么是阻尼系数

在电学中,差不多就是响应时间的意思。  在机械物理学中,系统的能量的减小——阻尼振动不都是因“阻力”引起的,就机械振动而言,一种是因摩擦阻力生热,使系统的机械能减小,转化为内能,这种阻尼叫摩擦阻尼;另一种是系统引起周围质点的震动,使系统的能量逐渐向四周辐射出去,变为波的能量,这种阻尼叫辐射阻尼。  摩擦得需要稳定的时间!指针万用表表针稳定住的时间!  在机械系统中,线性粘性阻尼是最常用的一种阻尼模型。阻尼力R的大小与运动质点的速度的大小成正比,方向相反,记作R=-C,C为粘性阻尼系数,其数值须由振动试验确定。由于线性系统数学求解简单,在工程上常将其他形式的阻尼按照它们在一个周期内能量损耗相等的原则,折算成等效粘性阻尼。物体的运动随着系统阻尼系数的大小而改变。如在一个自由度的振动系统中,[973-01],称临界阻尼系数。式中为质点的质量,K为弹簧的刚度。实际的粘性阻尼系数C 与临界阻尼系数C之比称为阻尼比。<1称欠阻尼,物体作对数衰减振动;>1称过阻尼,物体没有振动地缓慢返回平衡位置。欠阻尼对系统的固有频率值影响甚小,但自由振动的振幅却衰减得很快。阻尼还能使受迫振动的振幅在共振区附近显著下降,在远离共振区阻尼对振幅则影响不大。新出现的大阻尼材料和挤压油膜轴承,有显著减振效果。  在某些情况下,粘性阻尼并不能充分反映机械系统中能量耗散的实际情况。因此,在研究机械振动时,还建立有迟滞阻尼、比例阻尼和非线性阻尼等模型。  系统行为  系统的行为由上小结定义的两个参量——固有频率ωn和阻尼比ζ——所决定。特别地,上小节最后关于γ的二次方程是具有一对互异实数根、一对重实数根还是一对共轭虚数根,决定了系统的定性行为。  临界阻尼  当ζ = 1时,的解为一对重实根,此时系统的阻尼形式称为临界阻尼。现实生活中,许多大楼内房间或卫生间的门上在装备自动关门的扭转弹簧的同时,都相应地装有阻尼铰链,使得门的阻尼接近临界阻尼,这样人们关门或门被风吹动时就不会造成太大的声响。  过阻尼  当ζ > 1时,的解为一对互异实根,此时系统的阻尼形式称为过阻尼。当自动门上安装的阻尼铰链使门的阻尼达到过阻尼时,自动关门需要更长的时间。

6,什么是阻尼运动

弹簧往复的震动~就是靠弹性势能从而是弹簧以一个中轴往复的震动~ 望采纳~
在电学中,差不多就是响应时间的意思。 在机械物理学中,系统的能量的减小——阻尼振动不都是因“阻力”引起的,就机械振动而言,一种是因摩擦阻力生热,使系统的机械能减小,转化为内能,这种阻尼叫摩擦阻尼;另一种是系统引起周围质点的震动,使系统的能量逐渐向四周辐射出去,变为波的能量,这种阻尼叫辐射阻尼。 摩擦的需要稳定的时间!指针万用表表针稳定住的时间! 定义: 不论是弹簧振子还是单摆由于外界的摩擦和介质阻力总是存在,,在振动过程中要不断克服外界阻力做功,消耗能量,振幅就会逐渐减小,经过一段时间,振动就会完全停下来。这种振幅越来越小的振动叫做阻尼振动。 振幅随时间减小的振动称为阻尼振动.因为振幅与振动的能量有关,阻尼振动也就是能量不断减少的振动.阻尼振动是非简谐运动. 能量减少的方式有两种.一种是由于摩擦阻力的作用使振动系统的能量逐渐转化为热运动的能量.例如单摆摆动的过程中振幅减小或停下来就是由于系统的阻力作用使摆的机械能转化为空气的内能.另一种是振动系统引起周围物质的振动,使能量以波的形式向四周发出.例如:琴弦发出声音不仅因为有空气的阻力要消耗能量,同时也因为以波的形式辐射而减少能量.最后琴弦会停止振动. 机械振动按振幅的变化可分为阻尼振动(减幅振动)和无阻尼振动(等幅振动). 物体做无阻尼振动仅指其振幅大小不变,物体作简谐运动时,只受回复力的作用,不受任何阻力,不对外做功,系统没有能量输出、输入,总能量守恒,振幅保持不变,这是一种无阻尼的自由振动.另外一种是受迫等幅振动.物体在振动的过程中有能量的输出(损耗),系统又从外界输入了能量,正好补偿了在振动过程中所输出(损耗)的能量.这种振动系统的能量和振幅都保持不变
弹簧的震动 往复的震动~! 望采纳~
任何一个振动系统,当阻尼增加到一定程度时,物体的运动是非周期性的,物体振动连一次都不能完成,只是慢慢地回到平衡位置就停止了。当阻力使振动物体刚能不作周期性振动而又能最快地回到平衡位置的情况,称为“临界阻尼”,或中肯阻尼状态。如果阻尼再增大,系统则需要很长时间才能达到平衡位置,这样的运动叫过阻尼状态,系统如果所受的阻尼力较小,则要振动很多次,而振幅则在逐渐减小,最后才能达到平衡位置,这叫做“欠阻尼”状态。 补充定义:一个系统受初扰动后不再受外界激励,因受到阻力造成能量损失而位移峰值渐减的振动称为阻尼振动。系统的状态由阻尼率ζ来划分。不同系统中ζ的计算式不同,但意义一样。把ζ=0的情况称为无阻尼,即周期运动;把0<1的情况称为欠阻尼;把ζ>1的情况称为过阻尼;把ζ=1的情况称为临界阻尼,即阻尼的大小刚好使系统作非“周期”运动。与欠阻尼况和过阻尼相比,在临界阻尼情况下,系统从运动趋近平衡所需的时间最短。

文章TAG:临界  临界阻尼  电路  电路基础  临界阻尼  
下一篇