1,氧化还原电位 电极电势 的区别

在一般应用中,氧化还原电位和电极电势两个名词混用。氧化还原电位越负,越倾向于发生氧化反应;氧化还原电位越正,越倾向于发生还原反应。

氧化还原电位 电极电势 的区别

2,氧化还原电位orp受哪些因素影响

简单的说,ORP是温度,压力和溶液的函数,即受温度,压力和溶液中各种物质的组成,在一定温度,压力下,溶液的组成对ORP影响很大,其中pH值影响较为明显

氧化还原电位orp受哪些因素影响

3,什么是水的ORP氧化还原电位

水质监测中的氧化还原电位测定 测定意义: 氧化还原电位是多种氧化物与还原物质发生氧化还原反应的综合结果,能够帮助了解水体的电化学特征,分析水样的性质,是一项综合性指标。 测定方法: 以铂电极作指示电极,饱和甘汞电极作参比电极,与水样组成原电池,用晶体毫伏计或通用pH计测定。 注意水体的氧化还原电位必须在现场测定。

什么是水的ORP氧化还原电位

4,氧化还原电位和zeta电位一样吗

氧化还原电位就是用来反映水溶液中所有物质表现出来的宏观氧化-还原性。氧化还原电位越高,氧化性越强,电位越低,氧化性越弱。电位为正表示溶液显示出一定的氧化性,为负则说明溶液显示出还原性。Zeta电位的重要意义在于它的数值与胶态分散的稳定性相关。Zeta电位是对颗粒之间相互排斥或吸引力的强度的度量。分子或分散粒子越小,Zeta电位的绝对值(正或负)越高,体系越稳定,即溶解或分散可以抵抗聚集。反之,Zeta电位(正或负)越低,越倾向于凝结或凝聚,即吸引力超过了排斥力,分散被破坏而发生凝结或凝聚。Zeta电位与体系稳定性之间的大致关系如下表所示
签到!

5,什么是ORP

ORP是英文Oxidation-ReductionPotential的缩写,它表示溶液的氧化还原电位。ORP值是水溶液氧化还原能力的测量指标,其单位是mv。它由ORP复合电极和mv计组成。ORP电极是一种可以在其敏感层表面进行电子吸收或释放的电极,该敏感层是一种惰性金属,通常是用铂和金来制作。参比电极是和PH电极一样的银/氯化银电极。我们可以说溶液的ORP值在某一数值点附近表示了溶液的一种还原或氧化状态,或表示了溶液的某种性质(如卫生程度等),但这个数值会有较大的不同,你无法对它作出定量的确定,这和pH测试中的准确度是两个概念。另外,影响ORP值的温度系数也是一个变量,无法修正,因此ORP计一般都没有温度补偿功能。以上技术文章由上海瑞柯坤泰贸易有限公司提供,更多详细内容可以参看公司网站!

6,什么是物质氧化还原的电极电位

附:金属活动性 金属的活动性是反映金属在水溶液里形成水合离子倾向的大小,也就是反映金属在水溶液里起氧化反应的难易,它是以金属的标准电极电位为依据的。从能量角度来看,金属的标准电极电位除了与金属元素原子的电离能有关外,同时还与金属的升华能(固态单质变为气态原子时所需的能量)、水合能(金属阳离子与水化合时所放出的能量)等多种因素有关。 金属的活动性顺序最初是由化学家根据金属间的置换反应,还有金属跟水和各种酸、碱的反应总结而成。 应用: (1)排在前面的金属可以将排在后面的金属从它们的盐溶液中置换出来 (2)理论上讲,排在氢(H)前的金属才能和有氧化性的酸反应,置换出氢 (3)排在越后的金属越容易,也越先从它们的化合物中被置换出来。 (4)排在越前的金属越容易,也越先把其他化合物中的金属置换出来。 在判断溶液中的置换反应能否发生,以及发生置换反应的次序时,使用它是一种很简便的办法 具体内容: 钾 钙 钠 镁 铝 锰 锌 铬 铁 镍 锡 铅 (氢) 铜 汞 银 铂 金 K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au 以上是常用的 Cs>Rb>K>Ca>Na>Li>Mg>Al>Ti>Zn>Fe>Sn>Pb>Ni>(H)>Cu>Hg>Ag>Os>Ru>Ir>Rh>Pt>Pd>Au 以上就是各金属的大概顺序表,实际上,象Os,Ir,Ru,Pd,Rh,等副族元素的金属活动性相差很小,而且与具体反应条件有关. 完整版: Li K Rb Cs Ra Ba Sr Ca Na Ac La Ce Pr Nd Pm 锂、钾、铷、铯、镭、钡、锶、钙、钠、锕、镧、铈、镨、钕、钷、 Sm Eu Gd Tb Y Mg Am Dy Ho Er Tm Lu (H) Sc Pu Th Np Be 钐、铕、钆、铽、钇、镁、镅、镝、钬、铒、铥、镥、(氢)、钪、钚、钍、镎、铍、 U Hf Al Ti Zr V Mn Sm Nb Zn Cr Ga Fe Cd In Tl Co 铀、铪、铝、钛、锆、钒、锰、钐、铌、锌、铬、镓、铁、镉、铟、铊、钴、 Ni Mo Sn Tm Pb (D2) (H2) Cu Tc Po Hg Ag Rh Pd Pt Au 镍、钼、锡、铥、铅、(氘分子)、(氢分子)、铜、锝、钋、汞、银、铑、钯、铂、金 在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或碳氢化合物等。正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如二氧化锰、二氧化铅、氧化镍等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。
在一般应用中,氧化还原电位和电极电势两个名词混用。氧化还原电位越负,越倾向于发生氧化反应;氧化还原电位越正,越倾向于发生还原反应。

文章TAG:氧化  氧化还原  氧化还原电位  还原  氧化还原电位  电极电势  的区别  
下一篇