1,什么是LCTOF

它是液相色谱和飞行时间质谱联用技术,具体的可以在百度文库上搜索到。
前一个是样品不经分离直接进质谱,后一个是先经lc分离再进质谱部分。

什么是LCTOF

2,飞行时间质谱仪的应用领域有哪些

飞行时间质谱仪作为高分辨质谱,主要用于定性分析,它具有高分离度和精确质量数。可以应用于药物研究、代谢物鉴定、蛋白质组学和代谢组学研究、食品安全、法医鉴定、毒理学和环境筛查等领域。

飞行时间质谱仪的应用领域有哪些

3,飞行时间质谱的质谱仪的离子化过程

大气中存在大量的分子离子,基于质谱仪的电荷选择原理,这些已经自身带电的分子离子可以直接送入质量选择器中。于是一种叫做常压耦合(Atmospheric Pressure interface, APi)的方法就产生了。 这种没有离子源的质谱通过直接对离子进行筛选,获得离子的组分。

飞行时间质谱的质谱仪的离子化过程

4,飞行时间质谱的介绍

飞行时间质谱,Time of Flight Mass Spectrometer (TOF),是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管(ion drift tube)。由离子源产生的离子首先被收集。在收集器中所有离子速度变为0。使用一个脉冲电场加速后进入无场漂移管,并以恒定速度飞向离子接收器。

5,飞行时间质谱技术在细菌鉴定方面的应用

的 研究基质辅助激光解析电离飞行时间质谱对细菌快速鉴定的影响因素。方法 应用8种细菌,比较了不同培养基(哥伦比亚血琼脂、伊红美兰琼脂、普通营养琼脂)及培养时间对细菌质谱图的影响。结果 不同的培养基及培养时间会对细菌质谱图产生影响。结论 选择合适的培养基及培养时间可以提高细菌检测的准确率。

6,三重四级杆质谱仪和飞行时间质谱仪的差异是什么

三重四级杆质谱仪和飞行时间质谱仪的主要区别在于它们的工作原理和适用范围。1. 工作原理:三重四级杆质谱仪是一种串联质谱仪,包括三个四级杆质量过滤器。其中,q1和q3充当质量选择器,而q2充当碰撞池。样品通过q1分选出特定的母离子,然后在q2中与碰撞性气体发生碰撞诱导解离(cid),产生子离子。子离子经过q3分选后被检测器检测。这种方法具有高度选择性和灵敏度,特别适用于定量分析。而飞行时间质谱仪则是一种基于离子飞行时间差异进行质量分析的仪器,离子在同一电场下加速,根据它们的质量和电荷比,在飞行管中达到检测器。2. 适用范围:三重四级杆质谱仪主要适应于对已知化合物的定量分析,而不利于对未知化合物定性定量工作的开展。相比之下,飞行时间质谱仪更适应于对样品中未知化合物的初步筛查,缩小化合物范围。总的来说,三重四级杆质谱仪和飞行时间质谱仪在工作原理和适用范围上存在显著差异,根据具体应用需求选择合适的质谱仪即可。

7,飞行时间质谱与普通质谱有什么区别

所谓飞行时间质谱是指其质量分析是根据离子在通道飞行时间来识别的。一价离子在经过提取电压后获得相同的动能,由于不同离子的质量不同,导致飞行速度不同,从而在相同的通道内的飞行时间不同。还有四级杆质谱:通过改变交变电压来选取不同离子。扇形磁场质谱:通过带点离子在磁场内的轨迹不同来识别离子。希望对你有帮助

8,飞行时间质谱的概述

飞行时间质谱,Time of Flight Mass Spectrometer (TOF),是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管(ion drift tube)。由离子源产生的离子首先被收集。在收集器中所有离子速度变为0。使用一个脉冲电场加速后进入无场漂移管,并以恒定速度飞向离子接收器。离子质量越大,到达接收器所用时间越长;离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按m/z值大小进行分离。飞行时间质谱仪可检测的分子量范围大,扫描速度快,仪器结构简单。一部分飞行时间质谱仪的主要缺点是分辨率低,因为离子在离开在离子源时初始能量不同,使得具有相同质荷比的离子达到检测器的时间有一定分布,造成分辨能力下降。改进的方法之一是在线性检测器前面的加上一组静电场反射镜,将自由飞行中的离子反推回去,初始能量大的离子由于初始速度快,进入静电场反射镜的距离长,返回时的路程也就长,初始能量小的离子返回时的路程短,这样就会在返回路程的一定位置聚焦,从而改善了仪器的分辨能力。这种带有静电场反射镜的飞行时间质谱仪被称为反射式飞行时间质谱仪/Reflectron time-of-flight mass spectrometer。 飞行时间质谱有两种飞行模式,平行飞行模式和垂直飞行模式。在现代质谱产品中,大都已经采用垂直飞行模式。尤其在大气化学领域,美国的科研团队以质谱仪为主,欧洲则以测量粒径的仪器为主。其中,Aerodyne INC., Ionicon GmbH, THS INC.在近几年成为行业领军企业。 如图一所示,质谱仪需要在真空情况下运转,用以保护检测器,同时提高测量精度。在实际使用中,一个微孔(pinhole)需要被使用。 在如图所示的仪器中,气体样本首先通过微孔取样,然后到达离子源,有脉冲电场送入飞行时间模块。然后使用垂直于送入方向的脉冲电场对离子进行加速。这样做的主要目的是确定所有离子在水平方向没有初速度。在U型飞行之后,达到传感器。 不同离子到达传感器的时间不同,借此来选择m/z。通常的假设认为离子只能带一个电荷,如此,得到的信号,直接对应检测到离子的相对原子质量,所以在多数质谱图表中,x轴单位均为原子质量单位(Atomic Mass Unit, AMU)。 四级杆质谱(Quadru Pole Mass Analyzer Mass Spectrometer, QMA-MS)在采样过程中,每次只允许一个特定的m/z通过,因此如果要获得一个完整的质谱图,需要对不同的m/z进行扫描。在大气化学领域生产四级杆质谱的主要生产商为Aerodyne的ACSM产品和THS。 而ToF-MS在每次进样时,可以采集样本中所有的m/z。四级杆质谱进行24小时检测所获得的数据量通常为2MB左右,而ToF-MS在一天所采集的数据可以达到10GB。

9,飞行时间质谱仪的应用

飞行时间质谱仪作为高分辨质谱,主要用于定性分析,它具有高分离度和精确质量数。可以应用于药物研究、代谢物鉴定、蛋白质组学和代谢组学研究、食品安全、法医鉴定、毒理学和环境筛查等领域。了解更多飞行时间质谱仪:https://www.agilent.com.cn/zh-cn/product/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-instruments/quadrupole-time-of-flight-lc-ms/6546-lc-q-tof
因为ATOFMS可以鉴别组成颗粒物的特殊化合物,因此它可以提供了新视角来考察粒子与周围气体以及其他颗粒物之间的动态化学过程。实时化学组分分析可以消除传统的滤膜或碰撞器气溶胶采样方法的固有问题,比如二次化学反应或者半挥发性化合物的损失。3800-ATOFMS的应用包括:· 气溶胶分析研究· 大气粒子表征、排放源识别· 半导体加工过程· 室内空气质量监测· 气溶胶-药物释放研究· 吸入毒理学研究· 药物强化样品分析· 化学和生物气溶胶检测· 发动机排放测量· 粉末生产质量以及过程控制等。

10,飞行时间质谱技术

质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家阿斯顿质谱仪开始主要是作为一种研究仪器使用的,这样用了20年后才被真正当作一种分析工具。它最初作为高度灵敏的仪器用于实验中,供设计者找寻十分可靠的结果。早期的研究者们忙着测定精确的原子量和同位素分布,不能积极地去探索这种仪器的新用途。由于同位素示踪物研究的出现,质谱仪对分析工作的用处就越发变得明显了。氮在植物中发生代谢作用的生物化学研究要求用15N作为一种示踪物。但它是一种稳定的同位素,不能通过密度测量来精确测定,所以质谱仪就成了必要的分析仪器。这种仪器在使用稳定的13C示踪物的研究中以及在基于稳定同位素鉴定的工作中也是很有用的。标准型的质谱仪到现在已经使用了大约45年。40年代期间,石油工业在烃混合物的分析中开始采用质谱仪。尽管这种质谱图在定量解释时存在着难以克服的计算麻烦,但在有了高速计算机后,这种仪器就能在工业方面获得重大的成功。(1)近20年来质谱技术随着新颖电离技术,质量分析技术,与各种分离手段的联用技术以及二维分析方法的发展,质谱已发展成为最广泛应用的分析手段之一。其最突出的技术进步有以下几个方面:新的解吸电离技术不断涌现,日趋成熟,可测分子量范围越来越高,并逐步适用于难挥发、热敏感物质的分析,例如海洋天然产物、微生物代谢产物,动植物二次代谢产物以及生物大分子的结构研究。最有发展前景的电离方法有:(3)串联质谱等二维质谱分析方法。如果把二台质谱仪串联起来,把第一台用作分离装置,第二台用作分析装置,这样不仅能把混合物的分离和分析集积在一个系统中完成,而且由于把电离过程和断裂过程分离开来,从而提供多种多样的扫描方式发展二维质谱分析方法来得到特定的结构信息。本法使样品的预处理减少到最低限度,而且可以抑制干扰,特别化学噪音,从而大大提高检测极限。串联质谱技术对于利用上述各种解吸电离技术分析难挥发、热敏感的生物分子也具有重要的意义。首先解吸电离技术一般都使用底物,因此造成强的化学噪音,用串联质谱可以避免底物分子产生的干扰,大大降低背景噪音,其次解吸电离技术一般都是软电离技术,它们的质谱主要显示分子离子峰,缺少分子断裂产生的碎片信息。如果采用串联质谱技术,可使分子离子通过与反应气体的碰撞来产生断裂,因此能提供更多的结构信息。近年来把质谱分析过程中的电离和碰撞断裂过程分离开来的二维测定方法发展很快,主要的仪器方法有以下几种。

文章TAG:飞行  质谱  什么  飞行质谱  
下一篇