本文目录一览

1,柯尔效应是什么

指与电场二次方成正比的电感应双折射现象。放在电场中的物质,由于其分子受到电力的作用而发生取向(偏转),呈现各向异性,结果产生双折射,即沿两个不同方向物质对光的折射能力有所不同。 这一现象是1875年J.克尔发现的。后人称它为克尔电光效应,或简称克尔效应。

柯尔效应是什么

2,求助kirk效应是什么

若將雙載子電晶體之集極電流IC,加以遞增時遮斷頻率 將會遞減。由於注入多量之載子,集極、基極接合之空乏層寬度將變狹,而產生虛假之基極寬度增大,稱為克爾克效應。
若將雙載子電晶體之集極電流IC,加以遞增時遮斷頻率 將會遞減。由於注入多量之載子,集極、基極接合之空乏層寬度將變狹,而產生虛假之基極寬度增大,稱為克爾克效應。

求助kirk效应是什么

3,克尔效应的实验原理

各向同性介质比如玻璃,石蜡,水,硝基苯等,在强电场作用中会表现出各向异性的光学性质,表现出了双折射现象。折射率差和电场强度的平方成正比,称之为克尔效应。克尔盒结构如图所示,在两平行平板间加高电压,在电场作用下,因为分子的规律排列,这一些介质就表现出像单轴晶体那样的光学性质,光轴方向就与电场的方向对应。当线偏振光沿着与电场垂直方向通过介质时,分解成两束线偏振光。一束光矢量沿着电场方向,另一束的光矢量与电场垂直。

克尔效应的实验原理

4,光在介质中传播的具体过程

楼主的问题涉及量子光学,科学家们还在探讨我个人是支持费曼的量子电动力学理论的就是光出现在某点的概率=波函数(x,y,z)的平方但这个说法遭到不少家抨击,认为光子没有净质量就不存在概率波楼上的回答貌似是在波动光学层面上的,叫克尔效应,可以在介观层面上对光电子散射作一定的解释
光在介质的传播过程,是光与介质相互作用的过程,这个过程有两个相关的分过程:一是光作用在介质上引起的介质的极化,产生宏观的极化强度,为介质的极化过程。另一是光的辐射过程。介质中的光场随时间的变化,所产生的变化极化强度将作为一个光辐射源辐射光波。从极化强度与光电场的关系得知,当入射光的频率为ω时,在介质内引起了2ω、3ω………高次谐波极化强度,从而产生了2ω、3ω………高次谐波的光。当光场较弱时,极化强度与光电场之间呈线性关系,只能引起与入射光相同频率的极化强度,产生相同频率的辐射光波。当光强较强时,能观察到非线性效应。
所有

5,克尔效应的三大效应

克尔电光效应,或直流克尔效应,是特殊情况下,电场是一种缓变的外部应用领域,例如,电压在电极材料的影响下的应用领域,材料成为双折射,不同指标的折射光偏振平行或垂直应用领域。在不同的折射率,Δn,是由其中λ是光的波长,K是克尔常数,E是振幅电场。这种差异在折射率材料的原因行事像一个波当光被事件它的方向垂直的电场。如果材料是放在两个“跨越”(垂直)线性偏振片,没有灯光将转交时,电场是关闭的,而几乎所有的光将转交的一些最佳值电场。高等教育价值观的克尔常数允许传输来实现以较小的外加电场。一些极性液体,如硝基甲苯和硝基苯有非常大的克尔常数。玻璃细胞充满了其中的液体被称为科尔细胞。这些都是经常被用来调节光线,因为克尔效应非常迅速地回应变化的电场。光调制可以与这些设备的频率高达10GHz的。由于克尔效应相对薄弱,一个典型的科尔细胞可能需要的电压高达30千伏实现完全的透明度。这是在对比电光细胞,它可以运行在更低电压。另一个不利的科尔细胞是现有的最佳材料,硝基苯是有毒的。一些透明的晶体也被用于调制克尔,但他们有小克尔常数。 在磁光克尔效应,根据反映的磁材料具有轻微旋转偏振平面。它类似于法拉第效应下的两极分化的透光旋转。
[实验目的] 演示电致双折射。[实验原理]各向同性的介质如玻璃,石蜡,水,硝基苯等,在强电场作用下会表现出各向异性的光学性质,表现出双折射现象。折射率差与电场强度的平方成正比,称为克尔效应。克尔盒的结构如图所示,在两平行平板之间加上高电压,在电场作用下,由于分子的规律排列,这些介质就表现出象单轴晶体那样的光学性质,光轴的方向就与电场的方向对应。当线偏振光沿着与电场垂直的方向通过介质时,分解为两束线偏振光。一束的光矢量沿着电场方向,另一束的光矢量与电场垂直。[实验装置]如图所示。[演示方法]1.如图在p1和p2之间放入克尔盒,转动p1或者p2至消光位置;2.接通克尔盒的偏转电源,即可观察到屏幕上有光亮。改变两极板之间的电压,可以观察到屏幕上的光强会随之变化;3.保持两极板之间的电压不变,旋转p1或者p2,同样可以观察到屏幕上光强变化。[注意事项]小心操作,防止电击!内盛某种液体(如硝基苯)的玻璃盒子称为克尔盒,盒内装有平行板电容器,加电压后产生横向电场。克尔盒放置在两正交偏振片之间。无电场时液体为各向同性,光不能通过p2。存在电场时液体具有了单轴晶体的性质,光轴沿电场方向,此时有光通过p2(见偏振光的干涉)。实验表明 ,在电场作用下,主折射率之差与电场强度的平方成正比。电场改变时,通过p2的光强跟着变化,故克尔效应可用来对光波进行调制。液体在电场作用下产生极化,这是产生双折射性的原因。电场的极化作用非常迅速,在加电场后不到10-9秒内就可完成极化过程,撤去电场后在同样短的时间内重新变为各向同性。克尔效应的这种迅速动作的性质可用来制造几乎无惯性的光的开关——光闸,在高速摄影、光速测量和激光技术中获得了重要应用。

6,光电效应有哪几种

有3种。。光电效应分为光电子发射、光电导效应和光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。
光电效应 1)概述 在光的照射下,使物体中的电子脱出的现象叫做光电效应(photoelectric effect)。 (2)说明 ①光电效应的实验规律。 a.阴极(发射光电子的金属材料)发射的光电子数和照射发光强度成正比。 b.光电子脱出物体时的初速度和照射光的频率有关而和发光强度无关。这就是说,光电子的初动能只和照射光的频率有关而和发光强度无关。 c.仅当照射物体的光频率不小于某个确定值时,物体才能发出光电子,这个频率蛳叫做极限频率(或叫做截止频率),相应的波长λ。叫做红限波长。不同物质的极限频率”。和相应的红限波长λ。是不同的。 几种金属材料的红限波长 金 属 铯 钠 锌 银 铂 红限波长(埃) 6520 5400 3720 2600 1960 d.从实验知道,产生光电流的过程非常快,一般不超过lo-9秒;停止用光照射,光电流也就立即停止。这表明,光电效应是瞬时的。 ②解释光电效应的爱因斯坦方程:根据爱因斯坦的理论,当光子照射到物体上时,它的能量可以被物体中的某个电子全部吸收。电子吸收光子的能量hυ后,能量增加,不需要积累能量的过程。如果电子吸收的能量hυ足够大,能够克服脱离原子所需要的能量(即电离能量)i和脱离物体表面时的逸出功(或叫做功函数)w,那末电子就可以离开物体表面脱逸出来,成为光电子,这就是光电效应。 爱因斯坦方程是 hυ=(1/2)mv2+i+w 式中(1/2)mv2是脱出物体的光电子的初动能。 金属内部有大量的自由电子,这是金属的特征,因而对于金属来说,i项可以略去,爱因斯坦方程成为 hυ=(1/2)mv2+w 假如hυhυ0=w确定。相应的红限波长为 λ0=c/υ0=hc/w。 发光强度增加使照射到物体上的光子的数量增加,因而发射的光电子数和照射光的强度成正比。 ③利用光电效应可制造光电倍增管。光电倍增管能将一次次闪光转换成一个个放大了的电脉冲,然后送到电子线路去,记录下来。 电光效应 电光效应 electro-optical effect 某些各向同性的透明物质在电场作用下显示出光学各向异性的效应。电光效应包括克尔效应和泡克耳斯效应。 克尔效应 1875年英国物理学家j.克尔发现,玻璃板在强电场作用下具有双折射性质,称克尔效应。后来发现多种液体和气体都能产生克尔效应。观察克尔效应的实验装置如图所示。内盛某种液体(如硝基苯)的玻璃盒子称为克尔盒,盒内装有平行板电容器,加电压后产生横向电场。克尔盒放置在两正交偏振片之间。无电场时液体为各向同性,光不能通过p2。存在电场时液体具有了单轴晶体的性质,光轴沿电场方向,此时有光通过p2(见偏振光的干涉)。实验表明 ,在电场作用下,主折射率之差与电场强度的平方成正比。电场改变时,通过p2的光强跟着变化,故克尔效应可用来对光波进行调制。液体在电场作用下产生极化,这是产生双折射性的原因。电场的极化作用非常迅速,在加电场后不到10-9秒内就可完成极化过程,撤去电场后在同样短的时间内重新变为各向同性。克尔效应的这种迅速动作的性质可用来制造几乎无惯性的光的开关——光闸,在高速摄影、光速测量和激光技术中获得了重要应用。

文章TAG:克尔  克尔效应  效应  柯尔  克尔效应  
下一篇