本文目录一览

1,三相异步电动机正反转

朋友看看这个可以吗?按启动按钮SB1时,电动机正向启动。按启动按钮SB2时,电动机反向启动。按停车按钮SB3时,电动机停止运行。电动机由正向转动变到反向启动时,不用按SB3就可以直接换向。
短路和接地选用带这些功能的断路器,过载用热继电器。自锁、联锁用接触器的常开和常闭触点。

三相异步电动机正反转

2,所有电机都有正反转吗

罩级式单相交流电机只能向一个方向转。
不一定.
应该是
一般来说直流和交流电机都可以实现正反转的。当然,和接线,控制有关系的。
基本上电机都可以实现正反转(罩极电机除外)。

所有电机都有正反转吗

3,电机正反转的问题

主要由三相电源有一相缺相或一相接触不良而引起。88年我就遇到过这样的问题,同样是一台三相2.2KW的电动机,一天内几次开机,电动机一下正转,过一会再开机、电动机又反转,只是电动机的转速约慢一点,最后检查的结果为三相电源有一相熔断器断了,使电动机缺相运行,此种故障不能用常理去分析。
是三相电机的话,请查一下是不是电源缺相或者是电线有一相接触不良。
是三相电机的话,请查一下是不是电源缺相或者是电线有一相接触不良。
朋友,你电机如果是没有动过电源电路中的相序,在下次开机就反转这个就说明供电部门更改了电源的相序了,如果是使用中关了再启动就反转,再关机再开机又反转那么说明你电机又故障了,对于三相电机不可能,对于单相电机肯定是电容坏了或者电容和电机的启动绕组开路了,你不妨参考参考。
你没说明那台电机是作什么用的。带的可能是水泵等类的设备,自身存在反做用力的,就是机械力矩大于这么电机时使电机反转变成了发电机。你是三相电机。220V-600W的高压汞灯,在灯上加了一个32uF的电容,这个影响不了它的。

电机正反转的问题

4,电动机为什么能正转和反转怎么实现的

电动机为什么能正反转?原因很简单:根据左手定则:伸开左手,手心对着磁场的n极,四指方向指向导线内电流方向,则大姆指指的方向为导线的运动方向。要改变导线的运动方向,我们可以改变他的磁场方向和电流方向,电动机因为转子在磁力的作用下只要改变他的转子的受力的方向,他就会正转或者是反转,实现方法:改变定子磁场方向(不易实现)须将定子上的永久磁铁磁极调换,另外可以通过改变定子线圈的电流方向,直流的需要将正负极对调,但是目前很多设计都加了反向保护,没有加的才可以改,交流电机的改变激磁电流的方向(也就是启动线圈中电流的方向)三相交流电动机,将其中的某两相电对调即可。
改变磁场旋转方向即可改变电动机转向.三相电动机改变任意两相相序就能改变电动机转向.单相电动机改变工作绕组电流方向就能改变电动机转向.
答:不管是单相电机还是三相电机,或多相电机,它的定子内部都嵌有绕组,相数越多,绕组就越多,这些绕组相对于定子内径按一定的电角度分布。比如三相的来说,先是a绕组,转过120度电位角就是b绕组,再转过120电位角就是c绕组。 电机转向是这样规定的,当加于每个绕组的电源初始角与电机绕组的分布电位角的绕组对应时,就能产生旋转磁场,这个旋转磁场就能带动电机转子旋转。 接上比如:当三相电源a相接a绕组,b相接b绕组,c相接c绕组,那么就产生磁场从a绕组转向b绕组,再转向c绕组,再转向a绕组,一直循环下去,电机转子就正转了;反过来,当电源a相接a绕组,b相接c绕组,c相接b绕组,那么产生的磁场从a绕组转向c绕组,再转向b绕组,再转向a绕组,一直循环下去,电机的转子就反转了。
在实际操作中,任意调换三相电接头中两个就可实现反转.

5,220v电机正反转电路图

你发图我给你说怎么接
改变单相电机的正反转,主要就是改变电容与哪个绕组串接的问题,下面有个单相电机正反转接线图,希望对你有用。
220v电机正反转接线图,如下:单相电容电机有两个绕组,即启动绕组和运行绕组。两个绕组在空间上相差90度。在启动绕组上串联了一个容量较大的电容器,当运行绕组和启动绕组通过单相交流电时,由于电容器作用使启动绕组中的电流在时间上比运行绕组的电流超前90度角,先到达最大值。扩展资料电机正反转,代表的是电机顺时针转动和逆时针转动。电机顺时针转动是电机正转,电机逆时针转动是电机反转。正反转控制电路图及其原理分析要实现电动机的正反转只要将接至电动机三相电源进线中的任意两相对调接线即可达到反转的目的。电机的正反转在广泛使用,例如行车、木工用的电刨床、台钻、刻丝机、甩干机和车床等。参考资料:百度百科-电机正反转
不是所有电机都可以正反转的。正副相绕组相同的单相电容启动的电机可以通过改变电容的接法实现。如是串激电机则改变电刷与定子绕组串联方向实现正反转。如是罩极式交流电机或是绕组抽头调速的电机则很难实现正反转。如是同步电机则需要机械定向装置确定转向。为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。一、正向启动:1、合上空气开关QF接通三相电源2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。二、反向启动:1、合上空气开关QF接通三相电源2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。

6,电动机正反转图的原理是怎么画

1、用开关控制原理图:向左转|向右转  如果电机是3条出线的,其中一条是公共点(分别与另外2条线的测电阻其值较小),接电源零线,然后把剩下的两条线并联电容,在电容的一端接220V电源相(火)线,就可以了,若要改变电机转向,只要把220V电源相(火)线接在电容的另一端就可以了。  2、用倒顺开关控制单相交流电机正反转原理图:向左转|向右转  将串接电容的绕组的接线的一端调整到电源的另一端,改变电机的旋转磁场方向即可实现。  3、离心开关、运转电容、接启动电容控制正反转原理:向左转|向右转  U1U2为电机主绕组,V1V2为电机内置离心开关,Z1Z2为副绕组。 V1Z1接运转电容(小),V2Z1接启动电容(大)。
三相异步电动机正反转控制原理图三相异步电动机正反转控制原理图  在选择断路器时,我们不仅要关注断路器的延迟曲线等主要指标,还应重视它的很多次要功能,这些常容易被忽略的性能不仅能为一个良好的设计锦上添花,而且还能帮助工程师们为其应用设计精密的保护电路。  目前市面上有许多配备了各种可选功能的断路器,这些功能对于电路保护设计很有帮助。下面列出的是一些较为常见的功能。  辅助接点(辅助开关):它们是与主接点电隔离的接点,适用于报警和程序开关。辅助接点可用于向操作人员或控制系统告警,发出警报,或在重要应用中接通备用电源。  传动:传动器类型的选择不仅是出于美观的考虑。具有开关速度是通/断开关两倍的传动摇杆开关的断路器能够节约成本和电路板空间。推挽式传动器在遇到突发事件时最为稳定。  分流端子:传统断路器被认为是“串联跳闸”的,这是因为接点、电流感应元件和负载都是串联的。分流端子从主电路分出支路,这样可将次级负载接入。如果初级负载发生了短路或过载,断路器将跳闸并切断两个负载的电源。  与辅助接点不同,分流端子是接到位于开关接点和电流感应元件之间的断路器载流通路的,这意味着第二个负载不受过载或短路保护。可以采用一个独立的断路器来保护次级电路,否则该电路只可用于具有内置保护电路的设备。  复式控制(遥控跳闸或继电器跳闸):复式控制断路器将两个彼此电隔离的感应元件组合起来以实现多项功能。例如,复式控制断路器可利用遥控传动器或感应器来进行传统的过流保护以及电路断接。遥控跳闸是复式控制的一个例子,通常被称为“继电器跳闸”。  低压跳闸:这是断路器中一个独立的电压敏感元件,如果电压降到预定值以下,它将使主接点开路。具有低电压跳闸的开关断路器被广泛用于有线连接电器的通/断控制。安全管理部门要求这些电器在发生掉电时必须切断电源,以避免电源恢复时电器突然重新启动的危险。  自动跳闸:一个自动跳闸的断路器在故障期间不会一直保持闭合—因为开关装置不会因强行保持传动器接通而失效。在一个完全自动跳闸的设计中,当传动器被保持在“接通”位置时,主接点在发生故障之后将始终保持开路。一些被称为“循环自动跳闸”的断路器在故障期间不能强行保持接通状态,但如果传动器一直处在“接通”的位置,则它们将周期性地接通和断开。如果断路器安装在容易够得着的地方(即未封闭),则应采用自动跳闸断路器。  自动复位:对于断路器不易够着的应用来说,在冷却期后自动复位的断路器是一个良好的选择。此时若指定使用可自动再起动的设备,则发生危险的可能性很大。
百科视频,电机正反转控制原理图
三相异步电动机正反转控制原理图 三相异步电动机正反转控制 原理图  在选择断路器时,我们不仅要关注断路器的延迟曲线等主要指标,还应重视它的很多次要功能,这些常容易被忽略的性能不仅能为一个良好的设计锦上添花,而且还能帮助工程师们为其应用设计精密的保护电路。  目前市面上有许多配备了各种可选功能的断路器,这些功能对于电路保护设计很有帮助。下面列出的是一些较为常见的功能。  辅助接点(辅助开关):它们是与主接点电隔离的接点,适用于报警和程序开关。辅助接点可用于向操作人员或控制系统告警,发出警报,或在重要应用中接通备用电源。  传动:传动器类型的选择不仅是出于美观的考虑。具有开关速度是通/断开关两倍的传动摇杆开关的断路器能够节约成本和电路板空间。推挽式传动器在遇到突发事件时最为稳定。  分流端子:传统断路器被认为是“串联跳闸”的,这是因为接点、电流感应元件和负载都是串联的。分流端子从主电路分出支路,这样可将次级负载接入。如果初级负载发生了短路或过载,断路器将跳闸并切断两个负载的电源。  与辅助接点不同,分流端子是接到位于开关接点和电流感应元件之间的断路器载流通路的,这意味着第二个负载不受过载或短路保护。可以采用一个独立的断路器来保护次级电路,否则该电路只可用于具有内置保护电路的设备。   复式控制(遥控跳闸或继电器跳闸):复式控制断路器将两个彼此电隔离的感应元件组合起来以实现多项功能。例如,复式控制断路器可利用遥控传动器或感应器来进行传统的过流保护以及电路断接。遥控跳闸是复式控制的一个例子,通常被称为“继电器跳闸”。  低压跳闸:这是断路器中一个独立的电压敏感元件,如果电压降到预定值以下,它将使主接点开路。具有低电压跳闸的开关断路器被广泛用于有线连接电器的通/断控制。安全管理部门要求这些电器在发生掉电时必须切断电源,以避免电源恢复时电器突然重新启动的危险。  自动跳闸:一个自动跳闸的断路器在故障期间不会一直保持闭合—因为开关装置不会因强行保持传动器接通而失效。在一个完全自动跳闸的设计中,当传动器被保持在“接通”位置时,主接点在发生故障之后将始终保持开路。一些被称为“循环自动跳闸”的断路器在故障期间不能强行保持接通状态,但如果传动器一直处在“接通”的位置,则它们将周期性地接通和断开。如果断路器安装在容易够得着的地方(即未封闭),则应采用自动跳闸断路器。  自动复位:对于断路器不易够着的应用来说,在冷却期后自动复位的断路器是一个良好的选择。此时若指定使用可自动再起动的设备,则发生危险的可能性很大。
1 步进电机 步进电动机是纯粹的数字控制电动机,它将电脉冲信号转变为角位移,即给一个脉冲,步进电机就转一个角度,因此非常合适单片机控制,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,电机则转过一个步距角,同时步进电机只有周期性的无累积误差,精度高。 步进电动机有如下特点: 1)步进电动机的角位移与输入脉冲数严格成正比。因此,当它转一圈后,没有累计误差,具有良好的跟随性。 2)由步进电动机与驱动电路组成的开环数控系统,既简单、廉价,又非常可靠,同时,它也可以与角度反馈环节组成高性能的闭环数控系统。 3)步进电动机的动态响应快,易于启停、正反转及变速。 4)速度可在相当宽的范围内平稳调整,低速下仍能获得较大转距,因此一般可以不用减速器而直接驱动负载。 5)步进电机只能通过脉冲电源供电才能运行,不能直接使用交流电源和直流电源。 6)步进电机存在振荡和失步现象,必须对控制系统和机械负载采取相应措施。 步进电机具有和机械结构简单的优点,图1是四相六线制步进电机原理图,这类步进电机既可作为四相电机使用,也可以做为两相电机使用,使用灵活,因此应用广泛。 步进电机有两种工作方式:整步方式和半步方式。以步进角1.8度四相混合式步进电机为例,在整步方式下,步进电机每接收一个脉冲,旋转1.8度,旋转一周,则需要200个脉冲,在半步方式下,步进电机每接收一个脉冲,旋转0.9度,旋转一周,则需要400个脉冲。控制步进电机旋转必须按一定时序对步进电机引线输入脉冲,以上述四相六线制步进电机为例,其半步工作方式和整步工作方式的控制时序如表1和表2所列。 步进电机在低频工作时,会有振动大、噪声大的缺点。如果使用细分方式,就能很好的解决这个问题,步进电机的细分控制,从本质上讲是通过对步进电机励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分,一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小,步进电机半步工作方式就蕴涵了细分的工作原理。 实现细分方式有多种方法,最常用的是脉宽调制式斩波驱动方式,大多数专用的步进电机驱动芯片都采用这种驱动方式,TA8435就是其中一种芯片。 2 基于TA8435H芯片的步进电机细分方式 2.1 TA8435芯片特点 TA8435是东芝公司生产的单片正弦细分二相步进电机驱动专用芯片,该芯片具有以下特点: 1)工作电压范围宽(10-40V); 2)输出电流可达1.5A(平均)和2.5A(峰值); 3)具有整步、半步、1/4细分、1/8细分运行方式可供选择; 4)采用脉宽调试式斩波驱动方式; 5)具有正/反转控制功能; 6)带有复位和使能引脚; 7)可选择使用单时钟输入或双时钟输入。 从图2中可以看出,TA8435主要由1个解码器,2个桥式驱动电路、2个输出电流控制电路、2个最大电流限制电路、1个斩波器等功能模块组成。 2.2 TA8435细分工作原理 在图3中,第一个CK时钟周期时,解码器打开桥式驱动电路,电流从VMA流经电机的线圈后经RNFA后与地构成回路,由于线圈电感的作用,电流是逐渐增大的,所以RNFB上的电压也随之上升。当RNFB上的电压大于比较器正端的电压时,比较器使桥式驱动电路关闭,电机线圈上的电流开始衰减,RNFB上的电压也相应减小;当电压值小于比较器正向电压时,桥式驱动电路又重新导通,如此循环,电流不断的上升和下降形成锯齿波,其波形如图3中IA波形的第1段,另外由于斩波器频率很高,一般在几十KHz,其频率大小与所选用电容有关,在OSC作用下,电流锯齿波纹是非常小的,可以近似认为输出电流是直流。在第2个时钟周期开始时,输出电流控制电路输出电压Ua达到第2阶段,比较器正向电压也相应为第2阶段的电压,因此,流经步进电机线圈的电流从第1阶段也升至第二阶段2,电流波形如图IA第2部分,第3时钟周期,第4时钟周期TA8435的工作原理与第1、2是一样的,只有又升高比较器正向电压而已,输出电流波形如图IA中第3、4部分。如此最终形成阶梯电流,加在线圈B上的电流,如图3中IB。在CK一个时钟周期内,流经线圈A和线圈B的电流共同作用下,步进电机运转一个细分步。 2.3 步进电机的应用 图4是单片机与TA8435相连控制步进电机的原理图,引脚M1和M2决定电机的转动方式:M1=0、M2=0,电机按整步方式运转;M1=1、M2=0,电机按半步方式运转;M1=0、M2=1,电机按1/4细分方式运转;M1=1、M2=1,电机按1/8步细分方式运转,CW/CWW控制电机转动方向,CK1、CK2时钟输入的最大频率不能超过5KHz,控制时钟的频率,即可控制电机转动速率。REFIN为高电平时,NFA和NFB的输出电压为0.8V,REFIN为低电平时,NFA和NFB输出电压为0.5V,这2个引脚控制步进电机输入电流,电流大小与NF端外接电阻关系式为:IO=Vref/Rnf。图4中,设REFIN=1,选用步进电机额定电流为0.4A,R1,R2选用1.6欧姆、2W的大功率电阻,O、C两线不接。步进电机按二相双极性使用,四相按二相使用时可以提高步进电机的输出转矩,D1-D4快恢复二极管用来泄放绕组电流。 以下是利用TA8435控制步进电机的程序,实现采用1/8细分方式控制步进电机的顺时钟方向转动的功能,利用定时器1向TA8435输出脉冲,用来控制步进电机转速。 3 结论 本文介绍了步进电机的特点和TA8435芯片工作原理,使用细分方式可以提高步进电机的控制精度,降低步进电机的振动和噪声,因此,在低频工作时,可以选用1/4细分或1/8细分模式,以降低系统的振动和噪声,当系统需要在高速工作时,细分模式就有可能达不到要求的速度,这时可以选用整步或半步方式,在速度较高时,在整步或半步工作模式下,步进电机运行稳定,振动小、噪声也小。TA8435在细分、半步、整步几种工作模式之间的切换是相当容易的,使用TA8435控制步进电机具有价格低、控制简单、工作可靠的特点,所以具有很高的推广价值和广阔的应用前景。

文章TAG:电动  电动机  动机  正反  电动机正反转  
下一篇