本文目录一览

1,为奎斯特采样定理的的原理

答:“奈奎斯特定理”又叫“采样定理”在进行模拟/数字信号的转换过程中,这个结论称为“采样定理”。一般实际应用中保证采样频率为信号最高频率的5

为奎斯特采样定理的的原理

2,采样应该遵循奶奎斯特采样定理还是香农定理

奶奎斯特采样定理又称香农采样定理,平时简称采样定理。 采样定理先由美国科学家“奈奎斯特”提出,其后苏联科学家“科捷利尼科夫”及美国科学家“香农”均对其完善作出了贡献。

采样应该遵循奶奎斯特采样定理还是香农定理

3,什么是奈奎特间隔和奈奎特速率

奈奎斯特采样定理是信息论,特别是通讯与信号处理学科中的一个重要基本结论。采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样定理指出,如果信号是带限的,并且采样频率高于信号带宽的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。奈奎斯特间隔—— 最大允许的抽样周期称为奈奎斯特间隔。奈奎斯特频率—— 通常最低允许的抽样率或称为奈奎斯特频率。
奈奎斯特速率:最小为0hz,最大为8000hz。 奈奎斯特间隔:时间间隔δt≤1/(2f),f:信号中的最高频率,所以应为△t≤0.000125.

什么是奈奎特间隔和奈奎特速率

4,什么是采样定律

在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。 你可以参考:http://baike.baidu.com/view/472214.htm
采样定理不是香农定理。另外,一般的权威通信著作也不会将采样定理称为“奈奎斯特定理”,这是因为奈奎斯特有3大准则,将抽样定理称为奈奎斯特定理极易跟奈奎斯特3准则混淆。抽样定理也有很多种,我想你要问的是数字信号中带限信号的抽样定理。所谓的“带限信号”,就是指信号的双边频谱在|f|

5,急求什么是时域采样定理和频域采样定理

采样定理是美国电信工程师H.奈奎斯特在1928年提出的,采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。时域采样定理频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/(2F),便可根据各采样值完全恢复原来的信号f(t)。 这是时域采样定理的一种表述方式。时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/(2fM)的采样值来确定,即采样点的重复频率f≥(2fM)。图为模拟信号和采样样本的示意图。时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。频域对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值 来表示,只要这些采样点的频率间隔ω≦π / tm 。

6,请解释一下采样定理

采样定理,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论。E. T. Whittaker(1915年发表的统计理论),克劳德·香农 与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高码元传输速率的公式:理想低通信道的最高码元传输速率B=2W Baud (其中W是理想) 采样定理理想信道的极限信息速率(信道容量)C = B * log2 N ( bps )采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。
所谓采样定理 ,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论。采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样定理指出,如果信号是带限的,并且采样频率高于信号带宽的两倍,那么,原来的连续信号可以从采样样本中完全重建出来。带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是有限的。采样定理是指,如果信号带宽不到采样频率的一半(即奈奎斯特频率),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。采样频率必须大于被采样信号带宽的两倍,另外一种等同的说法是奈奎斯特定律必须大于被采样信号的带宽。如果信号的带宽是100hz,那么为了避免混叠现象采样频率必须大于200hz。换句话说就是采样频率必须至少是信号中最大频率分量频率的两倍,否则就不能从信号采样中恢复原始信号。在模拟视频系统中,采样率定义为帧频和场频,而不是概念上的像素时钟。图像采样频率是传感器积分周期的循环速度。由于积分周期远远小于重复所需时间,采样频率可能与采样时间的倒数不同。50 hz - pal 视频60 / 1.001 hz - ntsc 视频当模拟视频转换为数字视频的时候,出现另外一种不同的采样过程,这次是使用像素频率。一些常见的像素采样率有:13.5 mhz - ccir 601、d1 video高频 luminance 成分的混淆现象作为摩尔纹出现。

文章TAG:采样  采样定理  定理  奎斯特  采样定理  
下一篇