本文目录一览

1,核磁共振是什么

核磁共振的功能

核磁共振是什么

2,核磁共振使体内的什么发生共振

其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。

核磁共振使体内的什么发生共振

3,核磁共振成像可以用于哪些疾病

核磁共振---其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
都是检查身体内部和骨骼的,其中一个比一个清晰,磁共振主要用在脑部检查

核磁共振成像可以用于哪些疾病

4,磁共振是什么原理能检查的准确吗

磁共振的基本原理是将人体置于特殊的磁场中,用射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,称为磁共振成像。 磁共振成像对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,无电离辐射,对机体没有不良影响。磁共振成像对以下病变能准确显示:中枢神经系统病变,如脑内血管病变,颅脑肿瘤,颅内感染,脑部退行性变,颅脑先天发育畸形,颅脑外伤,脊椎病变,脊髓各种病变;五官病变,如眼眶内炎症、眶内肿瘤、眶内血管病变,副鼻窦炎症、肿瘤,舌部肿瘤,腮腺病变,耳部各种肿瘤,咽喉部病变;胸部病变,如心脏及大血管畸形及肿瘤,纵隔肿瘤及纵隔疝,肺部先天畸形、肺血管病变及肿瘤,乳腺炎症、增生及肿瘤;腹盆腔病变,如肝囊肿、血管瘤、肝癌,胆道结石、肿瘤,脾、肾、胰腺挫伤、炎症及肿瘤前列腺增生、肿瘤;卵巢、子宫先天畸形及肿瘤;骨关节病变,如肩关节、膝关节损伤,股骨头缺血坏死,骨骼炎症及肿瘤。

5,核磁共振光谱屏蔽常数大小的顺序怎么判断

第八章 核磁共振谱光谱 学习要求: 1、 学会如何借助光学技术来分析化合物的结构。 2、 掌握谱图分析,了解各种质子化学位移的位置。 3、 知道影响化学位移的因素。 由上面的讨论可知,对于一个未知物,红外光谱可以迅速地鉴定出未知物分子中具有的哪些官能团,能指出是什么类型的化合物,但它难以确定未知物的精细结构。自20世纪50年代中期,核磁共振技术开始应用于有机化学,对有机化学产生了巨大的影响,已发展成为研究有机化学最重要的工具之一,成为有机化合物结构测定不可缺少的手段。 8.1基本原理 (1)核磁共振现象 核磁共振是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。核的自旋量子数与原子的质量数和原子序数之间存在着一定的关系:当原子的质量数和原子序数两者之间是奇数或两者均为奇数时,I≠0,该原子核就有自旋现象,产生自旋磁矩。如 等。当原子的质量数和原子序数均为偶数时,I=0,原子核不能产生自旋运动,也没有磁矩,如 等。 当I≠0的原子核置于一均匀的外磁场(HO)中时,核的自旋具有(2I+1)个不同的取向。对于氢原子核(I=1/2),其自旋产生的磁矩在外磁场中可有两种取向:一种 是与外磁场方向相同, 称为顺磁取向。该取向的磁量子数m=+1/2,或用α表示。另一种 是与外磁场方向相反,称为反磁取向。该取向的磁量子数m=-1/2,或用β表示。 反磁取向的能量较顺磁取向的能量高,这两种取向的能量差⊿E与外加磁场的强度成正比。 ⊿E= 式中h为普朗克常量,γ为核常数,称为核磁比。对于氢原子,γ=26750。以上关系如图9-28所示。不过即使在很强的外加磁场中,⊿E数值也很小。对于氢原子核,当H0=14092G(高斯,1G=10-4T)时,⊿E仅为2.5×10-5kJ/mol,当H0=23468G时,⊿E约为4×10-5kJ/mol,相当于电磁波谱中射频区的能量。 若外界提供电磁波,其频率适当,能量恰好等于核的两个自旋能级之差,hγ=⊿E则此原子核就可以从低能级跃迁到高能级,发生核磁共振吸收。核磁共振(Nuclear Magnetic Resonance)谱就是描述在不同电磁频率下的核磁共振吸收情况。 由上面的公式可得: bfsdjbchvbhsd 从上式可看出,一个特定的核(γ=常数),只有一种共振频率能使核从低能级跃迁至高能级,发生核磁共振。上式又叫共振条件。例如1H,当H0=1.0×104G时,γ=100MHz。而当H0=14092G时,13C和19F产生核磁共振所需要的频率分别为24.29和15.08MHz。 有机化学中研究得最多,应用得最广泛的是氢原子核(即质子1H)的核磁共振谱,又叫质子磁共振谱(Proton Magnetic Resonance),简写为PMR或1HNMR。近年来13C的核磁共振谱(13CNMR)有较大的发展,限于篇幅,这里只介绍核磁共振氢谱(1HNMR)。 (2)核磁共振仪简介: 图9-29为核磁共振仪示意图。其核心部件是一个强度很大的磁铁,样品管放在磁铁两极之间,样品管周围为射频线圈。其轴垂直于磁场方向,输入线圈的轴垂直输出线圈的轴。因而三者相互垂直,互不干扰。实现核磁共振的方法有两种:一是固定磁场H0,改变频率γ,这种方法叫扫频;另一是固定频率γ改变磁场H0,这种方法叫扫场。一般的核磁共振仪中多用扫场的方法。当磁场Ho和频率满足共振条件 时,样品中的质子便发生能级跃迁,接收器就会收到信号,有记录仪记录下来。实验室中常用的核磁共振仪有60MHz,90MHz,100MHz,220MHz,甚至可到400MHz。

6,核磁共振原理的氢谱

氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信息,可以推测质子在碳链上的位置。
核磁共振用nmr(nuclear magnetic resonance)为代号。 1.原子核的自旋 核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数i来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。 i为零的原子核可以看作是一种非自旋的球体,i为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1h,13c,15n,19f,31p的i均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。i大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。 2.核磁共振现象 原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。 式中,p是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值, 当自旋核处于磁场强度为h0的外磁场中时,除自旋外,还会绕h0运动,这种运动情况与陀螺的运动情况十分相象,称为进动,见图8-1。自旋核进动的角速度ω0与外磁场强度h0成正比,比例常数即为磁旋比γ。式中v0是进动频率。 微观磁矩在外磁场中的取向是量子化的,自旋量子数为i的原子核在外磁场作用下只可能有2i+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与i之间的关系是: m=i,i-1,i-2…-i 原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出: 向排列的核能量较低,逆向排列的核能量较高。它们之间的能量差为△e。一个核要从低能态跃迁到高能态,必须吸收△e的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称nmr。 目前研究得最多的是1h的核磁共振,13c的核磁共振近年也有较大的发展。1h的核磁共振称为质磁共振(proton magnetic resonance),简称pmr,也表示为1h-nmr。13c核磁共振(carbon-13 nuclear magnetic resonance)简称cmr,也表示为13c-nmr。 3.1h的核磁共振 饱和与弛豫 1h的自旋量子数是i=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。见图8-2。1h的两种取向代表了两种不同的能级, 因此1h发生核磁共振的条件是必须使电磁波的辐射频率等于1h的进动频率,即符合下式。 核吸收的辐射能大? 式(8-6)说明,要使v射=v0,可以采用两种方法。一种是固定磁场强度h0,逐渐改变电磁波的辐射频率v射,进行扫描,当v射与h0匹配时,发生核磁共振。另一种方法是固定辐射波的辐射频率v射,然后从低场到高场,逐渐改变磁场强度h0,当h0与v射匹配时,也会发生核磁共振。这种方法称为扫场。一般仪器都采用扫场的方法。 在外磁场的作用下,1h倾向于与外磁场取顺向的排列,所以处于低能态的核数目比处于高能态的核数目多,但由于两个能级之间能差很小,前者比后者只占微弱的优势。1h-nmr的讯号正是依靠这些微弱过剩的低能态核吸收射频电磁波的辐射能跃迁到高能级而产生的。如高能态核无法返回到低能态,那末随着跃迁的不断进行,这种微弱的优势将进一步减弱直至消失,此时处于低能态的1h核数目与处于高能态1h核数目相等,与此同步,pmr的讯号也会逐渐减弱直至最后消失。上述这种现象称为饱和。 1h核可以通过非辐射的方式从高能态转变为低能态,这种过程称为弛豫,因此,在正常测试情况下不会出现饱和现象。弛豫的方式有两种,处于高能态的核通过交替磁场将能量转移给周围的分子,即体系往环境释放能量,本身返回低能态,这个过程称为自旋晶格弛豫。其速率用1/t2表示,t2称为自旋晶格弛豫时间。自旋晶格弛豫降低了磁性核的总体能量,又称为纵向弛豫。两个处在一定距离内,进动频率相同、进动取向不同的核互相作用,交换能量,改变进动方向的过程称为自旋-自旋弛豫。其速率用1/t2表示,t2称为自旋-自旋弛豫时间。自旋-自旋弛豫未降低磁性核的总体能量,又称为横向弛豫。 4.13c的核磁共振 丰度和灵敏度 天然丰富的12c的i为零,没有核磁共振信号。13c的i为1/2,有核磁共振信号。通常说的碳谱就是13c核磁共振谱。由于13c与1h的自旋量子数相同,所以13c的核磁共振原理与1h相同。 将数目相等的碳原子和氢原子放在外磁场强度、温度都相同的同一核磁共振仪中测定,碳的核磁共振信号只有氢的1/6000,这说明不同原子核在同一磁场中被检出的灵敏度差别很大。13c的天然丰度只有12c的1.108%。由于被检灵敏度小,丰度又低,因此检测13c比检测1h在技术上有更多的困难。表8-2是几个自旋量子数为1/2的原子核的天然丰度。 5.核磁共振仪 目前使用的核磁共振仪有连续波(cn)及脉冲傅里叶(pft)变换两种形式。连续波核磁共振仪主要由磁铁、射频发射器、检测器和放大器、记录仪等组成(见图8-5)。磁铁用来产生磁场,主要有三种:永久磁铁,磁场强度14000g,频率60mhz;电磁铁,磁场强度23500g,频率100mhz;超导磁铁,频率可达200mhz以上,最高可达500~600mhz。频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频发射器用来产生固定频率的电磁辐射波。检测器和放大器用来检测和放大共振信号。记录仪将共振信号绘制成共振图谱。 70年代中期出现了脉冲傅里叶核磁共振仪,它的出现使13c核磁共振的研究得以迅速开展。 氢 谱 氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信息,可以推测质子在碳胳上的位置。

文章TAG:核磁原理  核磁共振是什么  
下一篇