傅里叶级数公式,一般周期函数的傅里叶级数的公式求助
来源:整理 编辑:智能门户 2024-06-27 23:47:38
本文目录一览
1,一般周期函数的傅里叶级数的公式求助
你好 在大一的下册里面 ,我就是大一的,f(t)=A0+∑Ansin(nωt+Φn)。也可以是,f(t)=a0/2+∑(an*cosnt+bn*sinnt)。。。
2,傅里叶级数
它的傅里叶展开就是它自己,原因是COS函数的正交性。如果你想深刻理解傅里叶变换的本质的话可以看下面一段文字~这样说吧:首先我们知道线性代数里,一个N维的向量(F)可以由N个完备的正交归一基底叠加而成,叠加系数怎么求呢?就是直接用这个向量(f)点乘各基底(就是用点乘来求它在各基底的分量)。好现在你把一个函数看成一个无限维的向量,每个函数值对应的就是一维,而在这个无限维的空间里,点乘被定义为这两个函数相乘后再积分(就跟高中里a·b=axbx+ayby一个道理)。而sin nx 和 cos nx就是这个空间里的一组正交基底!!按这种点乘的定义他们相互正交!!(现在你明白为什么他们要积分出来个0了吧)所以这就是傅里叶变换的精髓了,任何一个函数都能由这些相互正交的基底叠加出来,而叠加系数怎么求呢?就是前面说的点乘各基底(所以这就是为什么求叠加系数是用被展开函数去和这些sin cos积分)最后注意一个问题就是基底要归一,归一就是基底的模长要等于1,模长就是自己点乘自己傅里叶级数,忘得差不多了,好像记得端点π满足f(π)=[lim(x->π-)f(x)+lim(x->-π+)f(x)]/2, 对于奇函数,lim(x->π-)f(x)+lim(x->-π+)f(x)=0。 所以端点处的函数值,是人为的定义的,保证在这一点函数展开正确。原函数在这一点间断,那么展成傅里叶级数,在这一点也间断。从别处偷来的一段话,在间断点,fourier级数会突变。说白了就是:在函数间断处fourier级数也间断,但fourier间断处值始终为1/2(展开式左右极限和),而函数间断处值是人为定义的,你想取多少就取多少。如果恰巧取1/2(展开式左右极限和),那么fourier级数在这点就收敛,否则反之
3,傅里叶级数求解
解:∵以2l为周期的函数f(x)的傅里叶级数的表达式为f(x)=(1/2)a0+∑[ancos(nπx/l)+bnsin(nπx/l)],其中an=(1/l)∫(-l,l)f(x)cos(nπx/l)dx(n=0,1,2,……),bn=(1/l)∫(-l,l)f(x)cos(nπx/l)dx(n=1,2,……),∴1题,l=1,f(x)=e^x。∴a0=(1/l)∫(-l,l)f(x)dx=∫(-1,1)e^xdx=e-1/e。an=∫(-1,1)e^xcos(nπx)dx=[(-1)^n](a0)/[1+(nπ)^2],bn=∫(-1,1)e^xsin(nπx)dx=-[(-1)^n](a0)nπ/[1+(nπ)^2],∴f(x)=(a0)2题,l=1/2,f(x)=1-x^2。∴a0=(1/l)∫(-l,l)f(x)dx=2∫(-1/2,1/2)(1-x^2)dx=11/6。an=2∫(-1/2,1/2)(1-x^2)cos(2nπx)dx=-[(-1)^n]/(nπ)^2,bn=2∫(-1/2,1/2)(1-x^2)sin(2nπx)dx=0,∴f(x)=11/12-(1/π^2)∑[(-1)^n][cos(2nπx)]/n^2},其中n=1,2,……,∞。求 fourier 级数是格式的写法:函数 f(x) = π-x, 0<=x<=2π,的 fourier 系数 a(0) = (1/π)∫[0, 2π]f(x)dx = (1/π)∫[0, 2π](π-x)dx = ……, a(n) = (1/π)∫[0, 2π]f(x)cos(nx)dx = (1/π)∫[0, 2π](π-x)cos(nx)dx = ……,n = 1, 2, … b(n) = (1/π)∫[0, 2π]f(x)sin(nx)dx = (1/π)∫[0, 2π](π-x)sin(nx)dx = ……,n = 1, 2, …这样,函数 f(x) 展开成 fourier 级数 f(x) ~ a(0)/2 + ∑{n>=1}a(n)cos(nx) + b(n)sin(nx) = ……,0<2π 且该级数的和函数(先做图,可以看到延拓后的函数在除 x=0 和 x=2π 外的点是处处连续的)为 s(x) = [f(x-0)+f(x+0)]/2 = π-x,0<2π, = 0, x=0, 2π。 (整个过程就这些,计算就留给你了)
4,如何理解傅里叶变换公式
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。定义f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。通俗解释首页,使用正余弦波,理论上可以叠加为一个矩形。[2] 第一幅图是一个郁闷的余弦波 cos(x)傅里叶变换(5张)第二幅图是 2 个卖萌的余弦波的叠加 cos (x) +a.cos (3x)第三幅图是 4 个发春的余弦波的叠加第四幅图是 10 个便秘的余弦波的叠加随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。是上图的正弦波累加成矩形波,我们换一个角度来看看:这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱。可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。1、公式描述:公式中f(ω)为f(t)的像函数,f(t)为f(ω)的像原函数。2、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。3、相关* 傅里叶变换属于谐波分析。* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;* 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;*卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;* 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(fft))。
5,傅立叶级数是怎么一回事
应该是傅里叶级数。定义:如果一个给定的非正弦周期函数f(t)满足狄利克雷条件,它能展开为一个收敛的级数法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称为傅里叶级数(法文:série de Fourier,或译为傅里叶级数)一种特殊的三角级数。一. 傅里叶级数的三角函数形式 设f(t)为一非正弦周期函数,其周期为t,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即 其中a0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。a1cos(ω1t+ψ1)项称为一次谐波或基波,a1,ψ1分别为其振幅和初相角;a2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,a2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。 上式有可改写为如下形式,即 当a0,an, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。 把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。 从式(10-2-3)中看出,将n换成(-n)后即可证明有 a-n=an b-n=-bn a-n=an ψ-n=-ψn 即an和an是离散变量n的偶函数,bn和ψn是n的奇函数。 二. 傅里叶级数的复指数形式 将式(10-2-2)改写为 可见 与 互为共轭复数。代入式(10-2-4)有 上式即为傅里叶级数的复指数形式。 下面对和上式的物理意义予以说明: 由式(10-2-5)得的模和辐角分别为 可见的模与幅角即分别为傅里叶级数第n次谐波的振幅an与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。 的求法如下:将式(10-2-3a,b)代入式(10-2-5)有 上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即 即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。 在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即 引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅an和初相角ψn;(2)为研究信号的频谱提供了途径和方便。 高等数学中的傅立叶级数 傅立叶系数 傅立叶系数包括系数 ,积分号和它的积分域,以及里面的两个周期函数的乘积——其中一个是关于f的,另一个是关于x的函数f(x),另一个则是和级数项n有关的三角函数值。这个三角函数可以是正弦,也可以是余弦,因此傅立叶系数包括正弦系数和余弦系数。其中当n=0时,余弦值为1,此时存在一个特殊的系数 ,它只与x有关。正弦系数再成一个正弦,余弦再乘一个余弦,相加并且随n求和,再加上一半的 ,就称为了这个特别的函数f(x)的傅立叶级数。为什么它特别呢,我想因为这里只有它只限于一个周期函数而已,而级数的周期就是f(x)的周期,2 。 如果函数f(x)存在一个周期,但是不是2 了,而是关于y轴对称的任意一个范围,它还能写成傅立叶级数么?也可以的。只要把傅立叶系数里的 换成l,并且把积分号里的三角函数中的n 下除一个l,同时把系数以外的那个n 底下也除一个l。其他的都不动。也可以认为,2 周期的傅立叶级数其实三角函数中x前面的系数应该是 ,其他的 (积分域和系数)应该是x,只不过这时所有的l都是 罢了。 前面提及了,周期或是积分域,是关于y轴的一个任意范围。其实周期函数不用强调这个,但是为什么还要说呢?因为要特别强调一下定义域是满的。有些函数的定义域不是满的,是0到l,当然这样它有可能不是周期的。这些函数能写成傅立叶级数么?同样可以。而且,它的写法不再是正弦和余弦函数的累积,而是单独的一个正弦函数或是余弦函数。具体怎么写,就取决于怎么做。因为域是一半的,所以自然而然想到把那一半补齐,f就成了周期函数。补齐既可以补成奇函数也可以补成偶函数。补成积函数,写成的级数只有正弦项,即 为0。补成偶函数,写成的级数就只含有余弦项和第一项,即 为0。而,傅立叶系数相比非积非偶的函数要大一倍。 其实,如果不经延拓,上面那些对于奇偶函数同样使用。 在做题时,常常看到级数后面跟着一个系数还有一个正弦函数,然后后面给出了这个系数很复杂的一串式子,这时候就容易突然短路了。但是如果再定睛一看,会发现其实那个系数不过是一个有积分的傅立叶系数而已。那么一大串,应该看什么呢?应当先看积分域,一下就可以定出周期了。第二步要明确级数和函数的关系即等价关系。函数不但包含在级数中,而且函数本身也是和级数等价的。但一般那个级数里的函数是一个摆设,不起什么作用
6,傅里叶级数的详细介绍
一. 傅里叶级数的三角函数形式 设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即 其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。 上式有可改写为如下形式,即 当A0,An, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。 把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。 从式(10-2-3)中看出,将n换成(-n)后即可证明有 a-n=an b-n=-bn A-n=An ψ-n=-ψn 即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。 二. 傅里叶级数的复指数形式 将式(10-2-2)改写为 可见 与 互为共轭复数。代入式(10-2-4)有 上式即为傅里叶级数的复指数形式。 下面对和上式的物理意义予以说明: 由式(10-2-5)得的模和辐角分别为 可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。 的求法如下:将式(10-2-3a,b)代入式(10-2-5)有 上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即 即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。 在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即 引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。 高等数学中的傅立叶级数 傅立叶系数 傅立叶系数包括系数 ,积分号和它的积分域,以及里面的两个周期函数的乘积——其中一个是关于f的,另一个是关于x的函数f(x),另一个则是和级数项n有关的三角函数值。这个三角函数可以是正弦,也可以是余弦,因此傅立叶系数包括正弦系数和余弦系数。其中当n=0时,余弦值为1,此时存在一个特殊的系数 ,它只与x有关。正弦系数再成一个正弦,余弦再乘一个余弦,相加并且随n求和,再加上一半的 ,就称为了这个特别的函数f(x)的傅立叶级数。为什么它特别呢,我想因为这里只有它只限于一个周期函数而已,而级数的周期就是f(x)的周期,2 。 如果函数f(x)存在一个周期,但是不是2 了,而是关于y轴对称的任意一个范围,它还能写成傅立叶级数么?也可以的。只要把傅立叶系数里的 换成l,并且把积分号里的三角函数中的n 下除一个l,同时把系数以外的那个n 底下也除一个l。其他的都不动。也可以认为,2 周期的傅立叶级数其实三角函数中x前面的系数应该是 ,其他的 (积分域和系数)应该是x,只不过这时所有的l都是 罢了。 前面提及了,周期或是积分域,是关于y轴的一个任意范围。其实周期函数不用强调这个,但是为什么还要说呢?因为要特别强调一下定义域是满的。有些函数的定义域不是满的,是0到l,当然这样它有可能不是周期的。这些函数能写成傅立叶级数么?同样可以。而且,它的写法不再是正弦和余弦函数的累积,而是单独的一个正弦函数或是余弦函数。具体怎么写,就取决于怎么做。因为域是一半的,所以自然而然想到把那一半补齐,f就成了周期函数。补齐既可以补成奇函数也可以补成偶函数。补成积函数,写成的级数只有正弦项,即 为0。补成偶函数,写成的级数就只含有余弦项和第一项,即 为0。而,傅立叶系数相比非积非偶的函数要大一倍。 其实,如果不经延拓,上面那些对于奇偶函数同样使用。 在做题时,常常看到级数后面跟着一个系数还有一个正弦函数,然后后面给出了这个系数很复杂的一串式子,这时候就容易突然短路了。但是如果再定睛一看,会发现其实那个系数不过是一个有积分的傅立叶系数而已。那么一大串,应该看什么呢?应当先看积分域,一下就可以定出周期了。第二步要明确级数和函数的关系即等价关系。函数不但包含在级数中,而且函数本身也是和级数等价的。但一般那个级数里的函数是一个摆设,不起什么作用 fourier series 一种特殊的三角级数。法国数学家j.-b.-j.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明 傅里叶级数多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯 - 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。 给定一个周期为t的函数x(t),那么它可以表示为无穷级数: <math>x(t)=\sum _ 其中,<math>a_k</math>可以按下式计算: 傅里叶级数 <math>a_k=\frac 注意到<math>f_k(t)=e^ 傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下: 在任何周期内,x(t)须绝对可积; 傅里叶级数 在任一有限区间中,x(t)只能取有限个最大值或最小值; 在任何有限区间上,x(t)只能有有限个第一类间断点。 吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。 所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。一组n个互相正交的向量必然是线形无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线形表出。三角函数族的正交性用公式表示出来就是: <math>\int _ 奇函数<math>f_o(x)</math>可以表示为正弦级数,而偶函数<math>f_e(x)</math>则可以表示成余弦级数: <math>f_o(x) = \sum _傅里叶级数 <math>f_e(x) = \frac 傅里叶级数 任何正交函数系<math>\ <math>\int _ 那么级数<math>\sum _ <math>c_n=\int _傅里叶级数 事实上,无论(5)时是否收敛,我们总有: <math>\int _ <math>\int _ <math>\int _ <math>\int _ <math>\int _傅里叶级数 Fourier series 一种特殊的三角级数。法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯 - 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。 ============================================================================================================ 傅里叶级数的公式 给定一个周期为T的函数x(t),那么它可以表示为无穷级数: <math>x(t)=\sum _ 其中,<math>a_k</math>可以按下式计算: <math>a_k=\frac 注意到<math>f_k(t)=e^ 傅里叶级数的收敛性 傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下: 在任何周期内,x(t)须绝对可积; 在任一有限区间中,x(t)只能取有限个最大值或最小值; 在任何有限区间上,x(t)只能有有限个第一类间断点。 吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和X(t),那么X(t)在这些点上会有起伏。一个简单的例子是方波信号。 三角函数族的正交性 所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。一组n个互相正交的向量必然是线形无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线形表出。三角函数族的正交性用公式表示出来就是: <math>\int _ <math>\int _ <math>\int _ <math>\int _ <math>\int _ 奇函数和偶函数 奇函数<math>f_o(x)</math>可以表示为正弦级数,而偶函数<math>f_e(x)</math>则可以表示成余弦级数: <math>f_o(x) = \sum _ <math>f_e(x) = \frac 广义傅里叶级数 任何正交函数系<math>\ <math>\int _ 那么级数<math>\sum _ <math>c_n=\int _ 事实上,无论(5)时是否收敛,我们总有: <math>\int _{a}^{b}f^2(x)\,dx \ge \sum _{k=1}^{\infty}c^
_{k}</math>成立,这称作贝塞尔(Bessel)不等式。此外,式(6)是很容易由正交性推出的,因为对于任意的单位正交基<math>\{e_i\}^{N}_{i=1}</math>,向量x在<math>e_i</math>上的投影总为<math><x,e_i></math> 。
文章TAG:
傅里叶 傅里叶级数 级数 公式 傅里叶级数公式
大家都在看
-
自学电气自动化好吗女生,电气自动化专业对女生有什么影响?
2023-12-20
-
自动化压型设备,非标准自动化设备
2024-01-18
-
博野县自动化公司,上海博野工业自动化违约
2024-02-08
-
电气自动化平均分75,2021电气自动化
2024-02-24
-
惠州自动化设备pcb厂家,使用自动化设备完成pcb板
2024-02-25
-
泸州工业机器人自动化公司,合肥工业机器人自动化公司
2024-03-04
-
电气工程自动化国考省考,电气工程及其自动化国家考试
2024-04-05
-
电气自动化安装教学视频,三管车轮电气自动化教学视频
2024-04-22
-
潍坊自动化控制设备,鹏飞自动化控制设备潍坊
2024-04-24
-
生铁和铸铁的区别,铸铁生铁和熟铁的区别
2024-06-12
-
网络设置数据漫游是什么意思啊,移动网络里面的数据漫游是什么意思
2023-12-08
-
cannot缩写,缩写cannot怎么写?
2024-04-11
-
诺基亚6移动数据
2023-12-11
-
电气自动化的目的和意义,船舶电气自动化实训目的
2023-12-16
-
大同联通大数据招聘,中国东数西算工程全面提速建设数据中心
2023-12-29
相关文章推荐
- 制衣厂自动化设备开袋机
- 兰州自动化电气控制柜,自动控制柜制造商
- 苏州法比奥自动化公司,法比奥公司自动化设备
- rbt,rbt是什么意思
- 智能通话,vivo 手机智能接听怎么设置
- 李起,姓李 起什么名子有意义
- 写机器人逻辑,ABB机器人工作站逻辑
- 高压水枪装配自动化设备,安装高压水枪洗车方便吗?
- 工业自动化设计公司排行,国内工业自动化公司排名
- 咸阳自动化涂装设备,自动喷涂设备厂家有新进展
- 自动化包装棉花糖设备视频
- 感抗公式,容抗公式和感抗公式
- 制糖设备清净自动化,小型制糖设备价格
- 电脑如何长截屏,华为电脑如何长截屏
- itunes能备份哪些数据,iTunes备份了哪些数据?