1,瑞利分布的介绍

瑞利分布(Rayleigh Distribution):当一个随机二维向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布。

瑞利分布的介绍

2,瑞利分布的平方是什么分布

伽玛分布吧比如说变量s是两个正态分布变量t1和t2的平方和的开方,那么s应该是瑞利分布现在变量r=s平方=t1平方+t2平方应该是类似于Kai二次分布,伽玛分布的特例若是指数分布,在两边取ln,应该出现比例关系才对

瑞利分布的平方是什么分布

3,R06是什么分布

均匀分布。R(a,b)均匀分布的期望为(a+b)/2,方差为(b-a)^2/12
瑞利分布 http://baike.baidu.com/view/583359.htm
正态分布

R06是什么分布

4,瑞利分布与莱斯分布

C语言中的random函数可以产生均匀分布的随机变量分布区间为(0,1),假设x1,x2是由random产生的随机变量, 则y=sqrt(-2*ln(x1))为瑞利分布 theta=2*pi*x2为(0,2*pi)的均匀分布 n1=y*cos(theta),n2=y*sin(theta)为两个独立的正太分布 z=sqrt((a+n1)^2+(b+n2)^2),为莱斯分布,a ,b为常数

5,瑞利分布是怎么回事

瑞利分布是最常见的用于描述平坦衰落信号接收包络或独立多径分量接受包络统计时变特性的一种分布类型。两个正交高斯噪声信号之和的包络服从瑞利分布。DT--DriveTest--路测,专业术语中又把CQT称之为“点测” 无线网络性能测试包括CQT和DT两个方面。CQT包括呼叫建立测试、休眠重激活测试、传输时延测试等。DT主要测试用户吞吐量、FER、SCH速率分布、手机发射功率等。具体可以到百度百科看看http://baike.baidu.com/view/583359.htm
瑞利分布主要用来描述零件,构件承受非稳定循环应力时应力幅的分布规律。  _____________________________________________  指数分布:许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。  指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。  在电子元器件的可靠性研究中,指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的故障间隔时间的失效分布。但是,由于指数分布具有缺乏“记忆”的特性.因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同,显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。  指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。  ——————————————————————  高斯分布即正态分布:是在机械产品和结构工程中,研究应力分布和强度分布时,最常用的一种分布形式。它对于因腐蚀、磨损、疲劳而引起的失效分布特别有用。  在自然现象和社会现象中,大量随机变量都服从或近似正态分布,如材料性能、零件尺寸、化学成分、测量误差、人体高度等。  正态分布的实验频率曲线有以下特征:曲线的纵坐标值为非负值;观测值在平均值附近出现的机会最多,所以曲线存在一个高峰;大小相等、符号相反的偏差发生的频率大致相等,所以曲线有一中心对称轴;曲线两端向左、右延伸逐渐趋近于零,这表明特大正偏差和特大负偏差发生的概率极小,一般很少出现;在对称轴两边曲线上,各有一个拐点,具有这五个特征的曲线,并且要求该曲线下的总面积等于1,即符合理论频率曲线的要求。  正态分布是最基本的分布,在机械可靠性设计中,主要用来描述零件及钢材的静强度失效分布,给定寿命下的疲劳强度的分布或近似分布。如果影响零件某个功能参数的独立因素很多,但又不存在起决定作用的因素时,一般都可采用正态分布来描述。当影响的因素个数n5~6时,分布就渐近于正态分布。当然,正态分布的频率曲线从负无限大到正无限大,但是强度不可能是负值的,从这一点来看,强度不可能真正的正态分布,而可能是截尾正态分布。当变异系数u≤0.30时,正态分布负值区的概率是很小的,可以略而不计,由于正态分布研究得很多,所以机械零件某些功能参数的分布规律,常用正分布。

6,请问瑞利分布指数分布高斯分布是怎么定义的

瑞利分布主要用来描述零件,构件承受非稳定循环应力时应力幅的分布规律。  _____________________________________________  指数分布:许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。  指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。  在电子元器件的可靠性研究中,指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的故障间隔时间的失效分布。但是,由于指数分布具有缺乏“记忆”的特性.因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同,显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。  指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。  ——————————————————————  高斯分布即正态分布:是在机械产品和结构工程中,研究应力分布和强度分布时,最常用的一种分布形式。它对于因腐蚀、磨损、疲劳而引起的失效分布特别有用。  在自然现象和社会现象中,大量随机变量都服从或近似正态分布,如材料性能、零件尺寸、化学成分、测量误差、人体高度等。  正态分布的实验频率曲线有以下特征:曲线的纵坐标值为非负值;观测值在平均值附近出现的机会最多,所以曲线存在一个高峰;大小相等、符号相反的偏差发生的频率大致相等,所以曲线有一中心对称轴;曲线两端向左、右延伸逐渐趋近于零,这表明特大正偏差和特大负偏差发生的概率极小,一般很少出现;在对称轴两边曲线上,各有一个拐点,具有这五个特征的曲线,并且要求该曲线下的总面积等于1,即符合理论频率曲线的要求。  正态分布是最基本的分布,在机械可靠性设计中,主要用来描述零件及钢材的静强度失效分布,给定寿命下的疲劳强度的分布或近似分布。如果影响零件某个功能参数的独立因素很多,但又不存在起决定作用的因素时,一般都可采用正态分布来描述。当影响的因素个数n5~6时,分布就渐近于正态分布。当然,正态分布的频率曲线从负无限大到正无限大,但是强度不可能是负值的,从这一点来看,强度不可能真正的正态分布,而可能是截尾正态分布。当变异系数u≤0.30时,正态分布负值区的概率是很小的,可以略而不计,由于正态分布研究得很多,所以机械零件某些功能参数的分布规律,常用正分布。
瑞利衰落能有效描述存在能够大量散射无线电信号的障碍物的无线传播环境。若传播环境中存在足够多的散射,则冲激信号到达接收机后表现为大量统计独立的随机变量的叠加,根据中心极限定理,则这一无线信道的冲激响应将是一个高斯过程。如果这一散射信道中不存在主要的信号分量,通常这一条件是指不存在直射信号(los),则这一过程的均值为0,且相位服从0 到2π 的均匀分布。即,信道响应的能量或包络服从瑞利分布。若信道中存在一主要分量,例如直射信号(los),则信道响应的包络服从莱斯分布,对应的信道模型为莱斯衰落信道。 通常将信道增益以等效基带信号表示,即用一复数表示信道的幅度和相位特性。由此瑞利衰落即可由这一复数表示,它的实部和虚部服从于零均值的独立同分布高斯过程。

文章TAG:瑞利分布  分布  介绍  瑞利分布  
下一篇