本文目录一览

1,数字频率计

就是数字频率计啊!! 好好学 啊 小子

数字频率计

2,数字频率计的介绍

数字频率计是采用数字电路制做成的能实现对周期性变化信号频率测量的仪器。频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。通常说的,数字频率计是指电子计数式频率计。

数字频率计的介绍

3,数字频率计与数字频率计数器性质一样吗

本质上应该没有区别吧,这个采集频率应该就是计算一定时间内的上升沿或者下降沿的个数。
一样数字频率计就是记下一秒钟的数字脉冲
我擅长 数字频率计设计一个以单片机为核心的频率测量装置 交给我你放心

数字频率计与数字频率计数器性质一样吗

4,数字频率计的使用

楼主考虑问题很周到。 频率测试是电子学中最基本的测量之一。其基本原理就是用闸门计数的方式测量脉冲个数。 但有几个问题你考虑不周,或未理解(或知识面不够?): 1、频率计通常是边沿触发,而不是过零触发 2、用10s闸门获取0.1Hz分辨率的频率测试技术是存在的,早期很多产品就是如此,其闸门时间可以在1ms-10s多个档位中选择。 3、现代频率测量(或者说是智能频率计)早已突破上述方式,通常对1Hz以上的测量仍用传统方式,而对1Hz以下的测量用计时方式反算频率。 4、另外,还有游标测量等多种方式 如果想了解得详细一些,找几本书看看吧,学问深着呢。 智能频率计可测的频率范围非常宽,从0.00001Hz到若干GHz都能测量而且保证分辨率和精度。

5,数字频率计的研究现状和主要研究内容及方法

在电子测量领域中,频率测量的精确度是最高的,可达10—10E-13数量级。因此,在生产过程中许多物理量,例如温度、压力、流量、液位、PH值、振动、位移、速度、加速度,乃至各种气体的百分比成分等均用传感器转换成信号频率,然后用数字频率计来测量,以提高精确度。 由于大规模和超大规模数字集成电路技术、数据通信技术与单片机技术的结合,数字频率计发展进入了智能化和微型化的新阶段。其功能进一步扩大,除了测量频率、频率比、周期、时间、相位、相位差等基本功能外,还具有自捡、自校、自诊断、数理统计、计算方均根值、数据存储和数据通信等功能。此外,还能测量电压、电流、阻抗、功率和波形等。国际上数字频率计的分类很多。按功能分类,因计数式频率计的测量功能很多,用途很广。所以根据仪器具有的功能,电子计数器有通用和专用之分。 (1)通用型计数器:是一种具有多种测量功能、多种用途的万能计数器。它可测量频率、周期、多周期平均值、时间间隔、累加计数、计时等;若配上相应插件,就可测相位、电压、电流、功率、电阻等电量;配上适当的传感器,还可进行长度、重量、压力、温度、速度等非电量的测量。 (2)专用计数器:指专门用来测量某种单一功能的计数器。如频率计数器,只能专门用来测量高频和微波频率;时间计数器,是以测量时间为基础的计数器,其测时分辨力和准确度很高,可达ns数量级;特种计数器,它具有特种功能,如可逆计数器、予置计数器、差值计数器、倒数计数器等,用于工业和白控技术等方面。数字频率计按频段分类 (1)低速计数器:最高计数频率<10MHz; (2)中速计数器:最高计数频率10—100MHz; (3)高速计数器:最高计数频率>100MHz; (4)微波频率计数器:测频范围1—80GHz或更高。国际国内通用数字频率计的主要技术参数:1.频率测量范围 电子计数器的测频范围,低端大部分从10Hz开始;高端则以不同型号的频率计而异。因此高端频率是确定低、中、高速计数器的依据。如果装配相应型号的变频器,各种类型的数字频率计的测量上限频率,可扩展十倍甚至几十倍。2.周期测量范围 数字频率计最大的测量周期,一般为10s,可测周期的最小时间,依不同类型的频率计而定。对于低速通用计数器最小时间为1ys;对中速通用计数器可小到0.1ys(或10捍s)。3.晶体振荡器的频率稳定度 晶体振荡器的频率稳定度,是决定频率计测量误差的一个重要指标。可用频率准确度、日波动、时基稳定度、秒级频率稳定度等指标,来描述晶体振荡器的性能。对于时基稳定度来说,按要求低速通用计数器应达到1×10—/日;中速通用计数器应达到1×10—8/日;高速通用计数器应达到1×10—9/日。4.输入灵敏度 输入灵敏度是指在侧频范围内能保证正常工作的最小输入电压。目前通用计数器一般都设计二个输入通道,即d通道和月通道。对于4通道来说,灵敏度大多为50mV。灵敏度高的数字频率计可达30mV、20mV。5.输入阻抗 输入阻抗由输入电阻和输入电容两部分组成。输入阻抗可分为高阻(1M赡//25PF、500K鲍//30PF)和低阻(50鲍)。一般说来,低速通用计数器应设计成高阻输入;中速通用计数器,测频范围最高端低于100MHz,仍设计为高阻输入;对于高速通用计数器,测频>100MHz, 设计成低阻 (50Q) 输入, 测频<100MHz, 设计成高阻(500K魔//30PF)输入。

6,数字频率计

简易频率计 一、设计任务与要求 1.设计制作一个简易频率测量电路,实现数码显示。 2.测量范围:10Hz~99.99KHz 3.测量精度: 10Hz。 4. 输入信号幅值:20mV~5V。 5. 显示方式:4位LED数码。 二、方案设计与论证 频率计是用来测量正弦信号、矩形信号、三角形信号等波形工作频率的仪器,根据频率的概念是单位时间里脉冲的个数,要测被测波形的频率,则须测被测波形中1S里有多少个脉冲,所以,如果用一个定时时间1S控制一个闸门电路,在时间1S内闸门打开,让被测信号通过而进入计数译码器电路,即可得到被测信号的频率fx。 任务要求分析: 频率计的测量范围要求为10Hz~99.99KHz,且精度为10Hz,所以有用4片10进制的计数器构成1000进制对输入的被测脉冲进行计数;要求输入信号的幅值为20mV~5V,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面的闸门或计数电路要求被测的信号必须是矩形波,所以还需要波形整形电路;频率计的输出显示要经过锁存器进行稳定再通过4位LED数码管进行显示。 经过上述分析,频率计电路设计的各个模块如下图: 方案一: 根据上述分析,频率计定时时间1s可以通过555定时器和电容、电阻构成的多谐振荡器产生1000Hz的脉冲,再进行分频成1Hz即周期为1s的脉冲,再通过T触发器把脉冲正常高电平为1s;放大整形电路通过与非门、非门和二极管组成;闸门电路用一个与门,只有在定时脉冲为高电平时输入信号才能通过与门进入计数电路计数;计数电路可以通过5个十进制的计数器组成,计数器再将计的脉冲个数通过锁存器进行稳定最后通过4个LED数码显像管显示出来。 方案二: 频率计定时时间1s可以直接通过555定时器和电容、电阻构成的多谐振荡器产生1Hz的脉冲,再通过T触发器把脉冲正常高电平为1s;放大整形电路可以直接用一个具有放大功能的施密特触发器对输入的信号进行整形放大,其他模块的电路和方案一的相同。 通过对两种方案的分析,为了减少总的电路的延迟时间,提高测量精确度,所以选择元件少的第二种方案。 三、单元电路设计与参数计算 时基电路: 用555_VIRTUAL定时器和电容、电阻组成多谐振荡器产生1Hz的脉冲,根据书中的振荡周期 : T=(R1+R2)C*ln2 取C=10uF,R1=2KΩ,T=1s,计算得:R2=70.43KΩ,再通过T触发器T_FF把脉冲正常高电平为1s的脉冲,元件的连接如下: 经示波器仿真,产生的脉冲的高电平约为1S。 放大整形电路: 用一个74HC14D_4V的含放大功能的施密特触发器对输入脉冲进行放大整形,把输入信号放大整形成4V的矩形脉冲,其放大整形效果如下图: 闸门电路: 用一个与门74LS08作为脉冲能否通过的闸门,当定时信号Q为高电平时,闸门打开,输入信号进入计数电路进行计数,否则,其不能通过闸门。 计数电路: 计数电路用5(4)片74192N计数器组成100000(10000)进制的计数电路,74192N是上升沿有效的,来一个脉冲上升沿,电路记一次数,所以计数的范围为0~99999(5000)。但计数1S后要对计数器进行清零或置零,在这里用清零端,高电平有效,当计数1S后,Q为低电平,Q为高电平,所以用Q作为清零信号,接线图如下: 锁存显示电路: 当计数电路计数结束时,要把计得脉冲数锁存通过数码显示管稳定显示出来。锁存器用2片74ls273,时钟也是上升沿有效,当Q为下降沿时,Q恰好是上升沿,所以用Q作为锁存器的时钟,恰能在计数结束时把脉冲数锁存显示,电路的接线图如下: 四、总电路工作原理及元器件清单 1.总原理图 2.电路完整工作过程描述(总体工作原理) 555组成的多谐振荡器产生1Hz的脉冲,经过T触发器整形成高电平时间为1S的脉冲,高电平脉冲打开闸门74LS08N,让经施密特触发器74HC14D放大整形的被测脉冲通过,进入计数器进行1S的计数。当计数结束时,T触发器的Q为下降沿,Q刚好为上升沿,触发锁存器工作,让计数器输出的信号通过锁存器锁存显示,同时,高电平的Q信号对计数电路进行清零,此后,电路将循环上述过程,但对于同一个被测信号,在误差的允许范围内,LED上所显示的数字是稳定的。 3.元件清单 元件序号 型号 主要参数 数量 备注 1 74192 5 加法计数器 2 74LS273 2 锁存器 3 DCD_HEX 4 LED显示器 4 555_VIRTUAL 1 定时器 5 T_FF 1 T触发器 6 CAPACITOR_RATED 电容10Uf、额定电压50V 1 电容 7 CAPACITOR_RATED 电容10Nf、额定电压10V 1 电容 8 RES 阻值2KΩ 1 9 RES 阻值 1 10 74LS08 1 双输入与门 11 74HC14D_4V 1 施密特触发器,放大电压4V 12 AC_VOLTAGE 1 可调的正弦脉冲信号 五、仿真调试与分析 把各个模块组合起来后,进行仿真调试以达到任务要求。 ① 在信号输入端输入10Hz的交流脉冲,仿真,结果如下: 说明仿真的结果准确 ② 在信号输入端输入300Hz的交流脉冲,仿真,结果如下: 仿真结果准确 ③ 在信号输入端输入3KHz正弦脉冲,仿真,结果如下: ④输入20KHz的正弦脉冲,仿真,结果如下: 仿真结果结果与实际的结果相差20Hz,这说明频率越高,误差越大。经分析,这是由于各个元器件存在着延迟时间,1S的脉冲,经过各个元器件的延迟,计数时间会大于1s,频率越高,误差越大,所以计数的时间要稍微小于1S,调小时基电路的R3为70.23KΩ,仿真,结果如下: 还是存在误差,经过多次调节R3仿真,最后确定R3为70.06 KΩ时对于各个频率的测试都比较准确,20KHz时仿真结果如下: 所以R3为70.06KΩ是测得的各个频率值都比较准确,且电路设计都符合测任务要求。 六、结论与心得 在这次课程设计的过程中,我收获不少。首先,我学会了把一个电路分成模块去设计,最后再整合,这样可以把一个复杂的电路简单化了,并且这样方便与调试与修改;其次,设计有助了我去自学一些元器件的功能,去运用它;再次,我也初步会用multisim软件设计电路;最后,这次课程设计也提高了我查找问题、思考问题和解决问题的能力,还锻炼了我的耐性。 在这次课程设计中也遇到了很多问题,首先,是对元器件了解不多,对于要实现某种功能不知道用那一种元件,所以问同学,上网收索,再了解这种元件的逻辑功能,学会去用它;其次,不大会用电路设计软件,一开始用EWB软件设计,对模块仿真可以,但整合整个原理图仿真却不行,通过示波器观察输出波形发现脉冲走了一小段却停止了,以为是电路有问题,就查找了很多遍才找出问题,原来在那个软件仿真时是不允许存在两个信号,所以重新用multisim设计,才可以;最后,在用multisim仿真高频率时仿真速度极慢,所以调整了软件的仿真最大步长,但问题又出现了,信号紊乱,数码管显示数字不一,然后就猜想会不会是元件的问题,太高频率元件来不及反应就输出结果,但上网寻找答案,原来是软件的仿真步长会影响仿真的精确度,所以,某一范围的频率仿真,要用相应的最大仿真步长。 这个题目的设计花了自己不少心血,有时甚至一整天在弄,但是当自己成功地设计出电路时所获得的那一份成就感是无法表达的,所以整个电路的设计过程充满着苦恼与乐趣。 七、参考文献 [1] 阎石 《数字电子技术基本教程》第一版 ,清华大学出版社,2007.08

文章TAG:数字  频率  频率计  数字频率计  
下一篇