蝶形运算,谁能帮我解释下FPGA上的蝶形运算具体是什么意思嘛
来源:整理 编辑:智能门户 2025-02-23 13:52:50
本文目录一览
1,谁能帮我解释下FPGA上的蝶形运算具体是什么意思嘛
通过减少不必要的计算减少计算复杂度的,你可以去看看快速傅里叶变换(FFT),讲的很详细,这里一下子说不清楚
2,怎样用fft蝶形图计算序列的DFTx计算X
通常做4个点的FFT,就意味着你在市域上取了4个点的样本来做。FFT是DFT的快速实现方式,本质是完全一样的。你的问题应该是在问,如何用两个4点的FFT结构合起来实现8个点的DFT吧,那么这个就牵涉到你的蝴蝶是怎样画的了,应该不难画出来,请楼主自己试试。
3,matlab能算出FFT每一级蝶形运算的结果吗
蝶形运算指望有现成的函数是不可能的因为太简单了根本没人写。所以说按照蝶形运算的原理自己写一下就完事了。输出就是频谱之所以是蝶形运算,实际上得出的是以2点为周期的幅值以4点为周期的幅值以6点为周期的幅值以8点为周期的幅值以此类推
4,什么是FFT算法DSP是什么
FFT是快速傅里叶变换( Fast Fourier Transform )
DSP是数字信号处理 ( Digital Signal Processing )
1、蝶形算法:
有关蝶形算法的介绍和思想大家百度或者Google一下就很容易找到,这里只是说一下要注意的地方。
蝶形算法中有这样一个有趣的规则:若输入信号的顺序为自然顺序,那么输出信号的顺序就为倒位序(算法参见4)顺序。
2、二维FFT的变换顺序:
首先进行行变换,对变换后的结果再进行列变换。
3、关于二维FFT运算后的结果
按照公式运算出的结果中,能量大部分分集中在四个角,如果我们想要能量集中在中间,我们需要成一个欧拉数,其实也简单,你可以在输入信号时做一个简单的变换,如下描述:
设i,j为输入信号的坐标,那么
输入信号可表示为x(i, j), 若(i + j) % 2 == 0 则取源信号为输入信号,否则取源信号的相反数为输入信号,即 -x(i, j)。
运算出来的结果中,能量就集中在中间位置了。
4、关于倒位序算法
倒位序:就是将数字的各个尾反过来排序后得到的数字后的顺序,举个例子吧
如我们的输入8个信号,我们只需要三个位就可以描述着写信号的下标,比如1 = 001B, 2 = 010B等等,那么1的倒位后为100B = 4, 010B = 2,依此类推,这就是倒位序,最后生成的新的顺序就是排序后的结果,这个结果有一个特点,那就是把偶数和奇数分开,这也就是FFT的理论基础。
5,单片机实现傅立叶变换
用FPGA这种单片机在对FFT(快速傅立叶变换)算法进行研究的基础上,描述了用FPGA实现FFT的方法,并对其中的整体结构、蝶形单元及性能等进行了分析。关键词:FPGA FFT傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。1 整体结构一般情况下,N点的傅立叶变换对为:其中,WN=exp(-2 pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅立叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅立叶变换通过多重低点数傅立叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。N=8192点DFT的运算表达式为:式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。由式(3)可知,8k傅立叶变换可由4×2k的傅立叶变换构成。同理,4k傅立叶变换可由2×2k的傅立叶变换构成。而2k傅立叶变换可由128×16的傅立叶变换构成。128的傅立叶变换可进一步由16×8的傅立叶变换构成,归根结底,整个傅立叶变换可由基2、基4的傅立叶变换构成。2k的FFT可以通过5个基4和1个基2变换来实现;4k的FFT变换可通过6个基4变换来实现;8k的FFT可以通过6个基4和1个基2变换来实现。也就是说:FFT的基本结构可由基2/4模块、复数乘法器、存储单元和存储器控制模块构成,其整体结构如图1所示。图1中,RAM用来存储输入数据、运算过程中的中间结果以及运算完成后的数据,ROM用来存储旋转因子表。蝶形运算单元即为基2/4模块,控制模块可用于产生控制时序及地址信号,以控制中间运算过程及最后输出结果。2 蝶形运算器的实现基4和基2的信号流如图2所示。图中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要进行变换的信号,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3为旋转因子,将其分别代入图2中的基4蝶形运算单元,则有:A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)] (4)B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5)C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6)D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)] (7)看明白了吗?
6,求傅里叶变换
FFT的基本思想是把原始的N点序列,依次分解成一系列的短序列。充分利用DFT计算式中指数因子 所具有的对称性质和周期性质,进而求出这些短序列相应的DFT并进行适当组合,达到删除重复计算,减少乘法运算和简化结构的目的。此后,在这思想基础上又开发了高基和分裂基等快速算法,随着数字技术的高速发展,1976年出现建立在数论和多项式理论基础上的维诺格勒傅里叶变换算法(WFTA)和素因子傅里叶变换算法。它们的共同特点是,当N是素数时,可以将DFT算转化为求循环卷积,从而更进一步减少乘法次数,提高速度。FFT算法很多,根据实现运算过程是否有指数因子WN可分为有、无指数因子的两类算法。有指数因子的算法经典库利-图基算法 当输入序列的长度N不是素数(素数只能被1而它本身整除)而是可以高度分解的复合数,即N=N1N2N3…Nr时,若N1=N2=…=Nr=2,N=2则N点DFT的计算可分解为N=2×N/2,即两个N/2点DFT计算的组合,而N/2点DFT的计算又可分解为N/2=2×N/4,即两个N/4点DFT计算的组合。依此类推,使DFT的计算形成有规则的模式,故称之为以2为基底的FFT算法。同理,当N=4时,则称之为以4为基底的FFT算法。当N=N1·N2时,称为以N1和N2为基底的混合基算法。在这些算法中,基2算法用得最普遍。通常按序列在时域或在频域分解过程的不同,又可分为两种:一种是时间抽取FFT算法(DIT),将N点DFT输入序列x(n)、在时域分解成2个N/2点序列而x1(n)和x2(n)。前者是从原序列中按偶数序号抽取而成,而后者则按奇数序号抽取而成。DIT就是这样有规律地按奇、偶次序逐次进行分解所构成的一种快速算法。分裂基算法(RSFFT) 1984年由P.杜哈美尔和H.赫尔曼等导出的一种比库利图基算法更加有效的改进算法,其基本思想是在变换式的偶部采用基2算法,在变换式的奇部采用基4算法。优点是具有相对简单的结构,非常适用于实对称数据,对长度N=2能获得最少的运算量(乘法和加法),所以是选用固定基算法中的一种最佳折衷算法。计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。时间抽取算法 令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,…,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。因为于是由式⑶和式⑷得到(5a)(5b)因此,一个抽样点数为N 的信号序列x(n)的离散傅里叶变换,可以由两个 N/2抽样点序列的离散傅里叶变换求出。依此类推,这种按时间抽取算法是将输入信号序列分成越来越小的子序列进行离散傅里叶变换计算,最后合成为N点的离散傅里叶变换。通常用图1中蝶形算法的信号流图来表示式⑸的离散傅里叶变换运算。例如,N=8=2的抽样点的信号序列x(n)的离散傅里叶变换,可用如图2所示的FET算法的信号流图来计算。① N=2点的离散傅里叶变换的计算全由蝶形运算组成,需要M级运算,每级包括N/2个蝶形运算,总共有 个蝶形运算。所以,总的计算量为次复数乘法运算和N log2N次复数加法运算。② FFT算法按级迭代进行,计算公式可以写成⑹N抽样点的输入信号具有N个原始数据x0(n),经第一级运算后,得出新的N个数据x1(n),再经过第二级迭代运算,又得到另外N个数据x2(n),依此类推,直至最后的结果x(k)=xM(k)=X(k)在逐级迭代计算中,每个蝶形运算的输出数据存放在原来存贮输入数据的单元中,实行所谓“即位计算”,这样可以节省大量存放中间数据的寄存器。③ 蝶形运算中加权系数随迭代级数成倍增加。由图2可以看出系数的变化规律。对于N=8,M=3情况,需进行三级迭代运算。在第一级迭代中,只用到一种加权系数;蝶形运算的跨度间隔等于1。在第二级迭代中,用到两种加权系数即、;蝶形运算的跨度间隔等于2。在第三级迭代中,用到4种不同的加权系数即、、、;蝶形运算的跨度间隔等于4。可见,每级迭代的不同加权系数的数目比前一级迭代增加一倍;跨度间隔也增大一倍。④ 输入数据序列x(n)需重新排列为x(0)、x⑷、x⑵、x⑹、x⑴、x⑸、x⑶、x⑺,这是按照二进制数的码位倒置所得到的反序数,例如N=8中数“1”的二进制数为“001”,将其码位倒转变为“100”,即为十进制数“4”。
文章TAG:
蝶形运算 谁能帮我解释下FPGA上的蝶形运算具体是什么意思嘛
大家都在看
-
通用技术是什么,高中通用技术是什么课程?
2024-01-11
-
柔宇科技
2024-01-19
-
钢筋自动化设备招聘网南京,南京钢铁工人招聘
2024-02-07
-
长兴县自动化公司招聘,深圳自动化公司招聘
2024-05-11
-
河北正规自动化机械设备制造,机械设备制造及其自动化专业
2024-06-25
-
自动化种植水果机器设备,上海来贺自动化苹果分拣设备省人力
2024-08-02
-
性能模式,小米手机性能模式哪里切换
2024-08-23
-
小米显示器
2024-09-03
-
电压符号,电压的符号单位单位符号
2024-09-06
-
空调温控器,空调温控器的作用详细一点谢谢
2024-10-12
-
录制视频软件,电脑免费录制视频软件
2024-11-04
-
机器人的原动机主要由,未来的机器人有哪些看点?
2024-12-16
-
数据线哪里买划算,车险从哪里买比较划算
2024-01-03
-
附近哪里有自动化设备选择,做自动化设备哪里企业最多
2024-01-07
-
电气自动化技术好专升,电气自动化专业的技术好就业吗?
2024-04-01
578