本文目录一览

1,什么是线性马达 iphone线性马达 耐用吗

直线电机也叫线性电机 直线电机就是将旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应电动机,所以没区别

什么是线性马达 iphone线性马达 耐用吗

2,直线电机是什么

直线电机一种将电能直接转换成直线运动的传动装置。最常用的直线电机类型是平板式(有铁芯)和U 型槽式(无铁芯),它比其它传动元件有更多独特的优势,高精度、高速度、无噪音,几乎零维护(无接触零件)。 直线电机主要应用一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
你好,东莞上品机电,直线电机,DD马达
直线电机一种将电能直接转换成直线运动的传动装置
直线电机也称线性电机,线性马达,直线马达,推杆马达。直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。

直线电机是什么

3,线性马达的工作原理

谓线性马达又称为直线电机,是一种将传统的旋转电机沿轴线方向切开后,将旋转电机的初级展开作为线性马达的定子,次级通电后在电磁力的作用下沿着初级做直线运动,成为线性马达的动子。我们常说的磁悬浮,往往和线性马达驱动有着很大联系。磁浮运输系统通常采用“线性马达”作为推进系统的。线性马达的构成原理设靠三相交流电力励磁的移动用电磁石 (作为定子),分左右两排夹装在铝板两旁 (但不接触),磁力线与铝板垂直相交,铝板即感应而生电流,因而产生驱动力。由于线性感应马达的定子装在列车上,较导轨短,因此线性感应马达又称为“短定子线性马达”;线性同步马达的原理则是将超导电磁石装于列车上 (当作转子),轨道上则装有三相电枢线圈 (作为定子),当轨道上的线圈供应以可变周波数的三相交流电时,即能驱动车辆。由于车辆移动的速度系依与三相交流电周波数成比例的同步速度移动,故称为线性同步马达,而又由于线性同步马达的定子装于轨道上,与轨道同长,故线性同步马达又称为“长定子线性马达”。传统轨道运输系统由于使用专用轨道,并以钢轮作为支撑与导引,因此随着速度的增加,行驶阻力会递增,而牵引力则递减,列车行驶阻力大于牵引力时即无法再加速,故一直无法突破地面运输系统理论上最高速度每小时375公里的瓶颈 。虽然法国TGV曾创下传统轨道运输系统时速515.3公里的世界纪录,但因轮轨材料会有过热疲乏的问题,故现今德、法、西、日等国之高铁商业营运时速均不超过300公里。因此,如要进一步提升车辆速度,必须放弃传统以车轮行驶之方式,而采用“磁力悬浮”的方式,使列车浮离车道行驶,以减少摩擦力、大幅提高车辆的速度。此一浮离车道的作法,除不会造成噪音或空气污染外,并可增进能源使用之效率。另外采用“线性马达”亦可加快该磁浮运输系统的速度,因此使用线性马达的磁浮运输系统应运而生。所谓磁浮运输系统就是利用磁力相吸或相斥的原理,使列车浮离车道,此磁力的来源可分为“常电导磁石”或“超导磁石”。所谓的常电导磁石就是一般的电磁铁,即只有通电时才具有磁性,电流一切断则磁性消失,由于列车在极高速时集电困难,故常电导磁石仅能适用于采用磁力相斥原理、速度相对较慢的磁浮列车;至于速度高达500kph以上的磁浮列车,就非使用通一次电就永久具有磁性之超导磁石不可。因磁浮运输系统是利用磁力相吸或相斥的原理,故导致其分为“电动悬浮”与“电磁悬浮”两种型态。电动悬浮是利用同性相斥的原理,当列车经由外力而移动,装置于列车上的常电导磁石产生移动磁场,而在轨道上的线圈产生感应电流,此电流再生磁场,由于此二磁场方向相同,故列车与轨道间产生互斥力,列车随即由此互斥力举升而悬浮。因列车的悬浮是靠两磁场作用力相互平衡而达成,故其悬浮高度可固定不变,列车即因此具有相当之稳定性。此外,列车必须先以其他方式启动,其所带之磁场才能产生感应电流与磁场,车辆才会悬浮;因此,列车必须装置车轮以便“起飞”与“降落”之用,当速度达40kph以上时,列车开始悬浮,车轮自动收起;同理当速度渐减不再悬浮时,车轮自动放下以便滑行。通常采用电动悬浮的系统,只能以“线性同步马达”作为推进系统,且其速度相对较慢 。电动悬浮系统与线性同步马达的组合电磁悬浮则是利用异性相吸的原理,列车两侧向导轨环抱 (类似跨座式单轨系统),列车环抱的下部装有电磁石,导轨的底部装有钢板代替线圈,此时导轨之钢板在上,而列车之电磁石在下,当通电励磁时,电磁石产生之磁场吸引力吸引列车向上,列车因重力而下沉,两力平衡时使列车与导轨间产生间隙,列车即因此悬浮,其悬浮高度因磁力强弱而产生变化,故磁场之励磁电流须采封闭回路以保持磁力稳定。此外,列车一开始 (速度为零时) 即可产生悬浮,因此列车不须装置车轮。通常采用电磁悬浮的系统,可采用“线性感应马达”或线性同步马达作为推进系统,其速度可高达500kph以上。直线电机(线性马达)除了用于磁悬浮列车外,还广泛地用于其他方面,例如用于传送系统、电气锤、电磁搅拌器等.在我国,直线电机(线性马达)也逐步得到推广和应用.直线电机的原理虽不复杂,但在设计、制造方面有它自己的特点,产品尚不如旋转电机那样成熟,因此直线电机价格一直居高不下,对于直线电机有待进一步进行研究和改进。 百度文库中有 线性马达原理 的详细资料 希望可以帮助到你

线性马达的工作原理

4,线性马达是怎么工作的

线性马达的工作原理为:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。  线性马达:即直线电机,也称线性电机,直线马达,推杆马达。最常用的直线电机类型是平板式和U 型槽式,和管式。 线圈的典型组成是三相,有霍尔元件实现无刷换相。直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,世界许多国家都在研究、发展和应用直线电机,使得直线电机的应用领域越来越广。
谓线性马达又称为直线电机,是一种将传统的旋转电机沿轴线方向切开后,将旋转电机的初级展开作为线性马达的定子,次级通电后在电磁力的作用下沿着初级做直线运动,成为线性马达的动子。我们常说的磁悬浮,往往和线性马达驱动有着很大联系。磁浮运输系统通常采用“线性马达”作为推进系统的。线性马达的构成原理设靠三相交流电力励磁的移动用电磁石 (作为定子),分左右两排夹装在铝板两旁 (但不接触),磁力线与铝板垂直相交,铝板即感应而生电流,因而产生驱动力。由于线性感应马达的定子装在列车上,较导轨短,因此线性感应马达又称为“短定子线性马达”;线性同步马达的原理则是将超导电磁石装于列车上 (当作转子),轨道上则装有三相电枢线圈 (作为定子),当轨道上的线圈供应以可变周波数的三相交流电时,即能驱动车辆。由于车辆移动的速度系依与三相交流电周波数成比例的同步速度移动,故称为线性同步马达,而又由于线性同步马达的定子装于轨道上,与轨道同长,故线性同步马达又称为“长定子线性马达”。传统轨道运输系统由于使用专用轨道,并以钢轮作为支撑与导引,因此随着速度的增加,行驶阻力会递增,而牵引力则递减,列车行驶阻力大于牵引力时即无法再加速,故一直无法突破地面运输系统理论上最高速度每小时375公里的瓶颈 。虽然法国tgv曾创下传统轨道运输系统时速515.3公里的世界纪录,但因轮轨材料会有过热疲乏的问题,故现今德、法、西、日等国之高铁商业营运时速均不超过300公里。因此,如要进一步提升车辆速度,必须放弃传统以车轮行驶之方式,而采用“磁力悬浮”的方式,使列车浮离车道行驶,以减少摩擦力、大幅提高车辆的速度。此一浮离车道的作法,除不会造成噪音或空气污染外,并可增进能源使用之效率。另外采用“线性马达”亦可加快该磁浮运输系统的速度,因此使用线性马达的磁浮运输系统应运而生。所谓磁浮运输系统就是利用磁力相吸或相斥的原理,使列车浮离车道,此磁力的来源可分为“常电导磁石”或“超导磁石”。所谓的常电导磁石就是一般的电磁铁,即只有通电时才具有磁性,电流一切断则磁性消失,由于列车在极高速时集电困难,故常电导磁石仅能适用于采用磁力相斥原理、速度相对较慢的磁浮列车;至于速度高达500kph以上的磁浮列车,就非使用通一次电就永久具有磁性之超导磁石不可。因磁浮运输系统是利用磁力相吸或相斥的原理,故导致其分为“电动悬浮”与“电磁悬浮”两种型态。电动悬浮是利用同性相斥的原理,当列车经由外力而移动,装置于列车上的常电导磁石产生移动磁场,而在轨道上的线圈产生感应电流,此电流再生磁场,由于此二磁场方向相同,故列车与轨道间产生互斥力,列车随即由此互斥力举升而悬浮。因列车的悬浮是靠两磁场作用力相互平衡而达成,故其悬浮高度可固定不变,列车即因此具有相当之稳定性。此外,列车必须先以其他方式启动,其所带之磁场才能产生感应电流与磁场,车辆才会悬浮;因此,列车必须装置车轮以便“起飞”与“降落”之用,当速度达40kph以上时,列车开始悬浮,车轮自动收起;同理当速度渐减不再悬浮时,车轮自动放下以便滑行。通常采用电动悬浮的系统,只能以“线性同步马达”作为推进系统,且其速度相对较慢 。电动悬浮系统与线性同步马达的组合电磁悬浮则是利用异性相吸的原理,列车两侧向导轨环抱 (类似跨座式单轨系统),列车环抱的下部装有电磁石,导轨的底部装有钢板代替线圈,此时导轨之钢板在上,而列车之电磁石在下,当通电励磁时,电磁石产生之磁场吸引力吸引列车向上,列车因重力而下沉,两力平衡时使列车与导轨间产生间隙,列车即因此悬浮,其悬浮高度因磁力强弱而产生变化,故磁场之励磁电流须采封闭回路以保持磁力稳定。此外,列车一开始 (速度为零时) 即可产生悬浮,因此列车不须装置车轮。通常采用电磁悬浮的系统,可采用“线性感应马达”或线性同步马达作为推进系统,其速度可高达500kph以上。直线电机(线性马达)除了用于磁悬浮列车外,还广泛地用于其他方面,例如用于传送系统、电气锤、电磁搅拌器等.在我国,直线电机(线性马达)也逐步得到推广和应用.直线电机的原理虽不复杂,但在设计、制造方面有它自己的特点,产品尚不如旋转电机那样成熟,因此直线电机价格一直居高不下,对于直线电机有待进一步进行研究和改进。 百度文库中有 线性马达原理 的详细资料 希望可以帮助到你

5,线性马达是什么

我们常说的磁悬浮,往往和线性马达驱动有着很大联系 磁浮运输系统通常采用“线性马达”作为推进系统,有关线性马达之特性先予以说明。一般马达的构造是中间一根带有“转子”(Rotor) 可以转动的轴,四周则是“定子”(Stator),装了线圈通电后即可产生磁场。所谓线性马达就是将马达沿轴线方向切开后予以展开,使马达的回转运动变为直线运动,故称之为线性马达 (详如图3所示)。线性马达因定子与转子装设位置之不同而有线性感应马达 (LIM) 与线性同步马达 (LSM) 之分:线性感应马达是在导轨上安装反应板 (以铝板当转子),而在列车上装 线性感应马达之构成原理 [1] 设靠三相交流电力励磁的移动用电磁石 (作为定子),分左右两排夹装在铝板两旁 (但不接触),磁力线与铝板垂直相交,铝板即感应而生电流,因而产生驱动力。由于线性感应马达的定子装在列车上,较导轨短,因此线性感应马达又称为“短定子线性马达”(Short-stator Motor);线性同步马达的原理则是将超导电磁石装于列车上 (当作转子),轨道上则装有三相电枢线圈 (作为定子),当轨道上的线圈供应以可变周波数的三相交流电时,即能驱动车辆。由于车辆移动的速度系依与三相交流电周波数成比例的同步速度移动,故称为线性同步马达,而又由于线性同步马达的定子装于轨道上,与轨道同长,故线性同步马达又称为“长定子线性马达”(Long-stator Motor)。 传统轨道运输系统由于使用专用轨道,并以钢轮作为支撑与导引,因此随着速度的增加,行驶阻力会递增,而牵引力则递减,列车行驶阻力大于牵引力时即无法再加速,故一直无法突破地面运输系统理论上最高速度每小时375公里的瓶颈 [1]。虽然法国TGV曾创下传统轨道运输系统时速515.3公里的世界纪录,但因轮轨材料会有过热疲乏的问题,故现今德、法、西、日等国之高铁商业营运时速均不超过300公里。因此,如要进一步提升车辆速度,必须放弃传统以车轮行驶之方式,而采用“磁力悬浮”(Magnetic Levitation,简称“磁浮”Maglev) 的方式,使列车浮离车道行驶,以减少摩擦力、大幅提高车辆的速度。此一浮离车道的作法,除不会造成噪音或空气污染外,并可增进能源使用之效率。另外采用“线性马达”(Linear Motor) 亦可加快该磁浮运输系统的速度,因此使用线性马达的磁浮运输系统应运而生。 所谓磁浮运输系统就是利用磁力相吸或相斥的原理,使列车浮离车道,此磁力的来源可分为“常电导磁石”(Permanent Magnets) 或“超导磁石”(Super Conducting Magnets, SCM)。所谓的常电导磁石就是一般的电磁铁,即只有通电时才具有磁性,电流一切断则磁性消失,由于列车在极高速时集电困难,故常电导磁石仅能适用于采用磁力相斥原理、速度相对较慢 (约300kph) 的磁浮列车;至于速度高达500kph以上的磁浮列车 (利用磁力相吸原理),就非使用通一次电就永久具有磁性 (因此列车可以不用集电) 之超导磁石不可。 因磁浮运输系统是利用磁力相吸或相斥的原理,故导致其分为“电动悬浮”(Electrodynamic Suspension, EDS) 与“电磁悬浮”(Electromagnetic Suspension, EMS) 两种型态。电动悬浮 (EDS) 是利用同性相斥的原理,当列车经由外力而移动,装置于列车上的常电导磁石产生移动磁场,而在轨道上的线圈产生感应电流,此电流再生磁场,由于此二磁场方向相同,故列车与轨道间产生互斥力,列车随即由此互斥力举升而悬浮。因列车的悬浮是靠两磁场作用力相互平衡而达成,故其悬浮高度可固定不变 (约10 ~ 15mm),列车即因此具有相当之稳定性。此外,列车必须先以其他方式启动,其所带之磁场才能产生感应电流与磁场,车辆才会悬浮;因此,列车必须装置车轮以便“起飞”与“降落”之用,当速度达40kph以上时,列车开始悬浮 (即“起飞”),车轮自动收起;同理当速度渐减不再悬浮时,车轮自动放下以便滑行 (即“降落”)。通常采用电动悬浮 (EDS) 的系统,只能以“线性同步马达”(Linear Synchronous Motor, LSM) 作为推进系统,且其速度相对较慢 (约300kph),图1即显示电动悬浮系统 (EDS) 与线性同步马达 (LSM) 之组合。 电动悬浮系统 (EDS) 与线性同步马达 (LSM) 之组合 [1] 电磁悬浮 (EMS) 则是利用异性相吸的原理,列车两侧向导轨环抱 (类似跨座式单轨系统),列车环抱的下部装有电磁石,导轨的底部装有钢板代替线圈,此时导轨之钢板在上,而列车之电磁石在下,当通电励磁时,电磁石产生之磁场吸引力吸引列车向上,列车因重力而下沉,两力平衡时使列车与导轨间产生间隙 (Gap),列车即因此悬浮,其悬浮高度 (约10 ~ 15mm) 因磁力强弱而产生变化,故磁场之励磁电流须采封闭回路以保持磁力稳定。此外,列车一开始 (速度为零时) 即可产生悬浮,因此列车不须装置车轮。通常采用电磁悬浮 (EMS) 的系统,可采用“线性感应马达”(Linear Induction Motor, LIM) 或线性同步马达 (LSM) 作为推进系统,其速度可高达500kph以上,图2即显示电磁悬浮系统 (EMS) 与线性感应马达 (LIM) 之组合。

6,线性马达的特点是什么

线性马达是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。  主要优点: 1、进给速度范围宽。可从1(1)m/s到20m/min以上,目前加工中心的快进速度已达208m/min,而传统机床快进速度<60m/min,一般为20~30m/min。   2、速度特性好。速度偏差可达(1)0.01%以下。   3、加速度大。直线电机最大加速度可达30g,目前加工中心的进给加速度已达3.24g,激光加工机的进给加速度已达5g,而传统机床进给加速度在1g以下,一般为0.3g。   4、定位精度高。采用光栅闭环控制,定位精度可达0.1~0.01(1)m。应用前馈控制的直线电机驱动系统可减少跟踪误差200倍以上。由于运动部件的动态特性好,响应灵敏,加上插补控制的精细化,可实现纳米级控制。   5、行程不受限制。传统的丝杠传动受丝杠制造工艺限制,一般4~6m,更的行程需要接长丝杠,无论从制造工艺还是在性能上都不理想。而采用直线电机驱动,定子可无限加长,且制造工艺简单,已有大型高速加工中心X轴长达40m以上。   6、结构简单、运动平稳、噪声小,运动部件摩擦小、磨损小、使用寿命长、安全可靠。
我们常说的磁悬浮,往往和线性马达驱动有着很大联系磁浮运输系统通常采用“线性马达”作为推进系统,有关线性马达之特性先予以说明。一般马达的构造是中间一根带有“转子”(rotor) 可以转动的轴,四周则是“定子”(stator),装了线圈通电后即可产生磁场。所谓线性马达就是将马达沿轴线方向切开后予以展开,使马达的回转运动变为直线运动,故称之为线性马达 (详如图3所示)。线性马达因定子与转子装设位置之不同而有线性感应马达 (lim) 与线性同步马达 (lsm) 之分:线性感应马达是在导轨上安装反应板 (以铝板当转子),而在列车上装线性感应马达之构成原理 [1]设靠三相交流电力励磁的移动用电磁石 (作为定子),分左右两排夹装在铝板两旁 (但不接触),磁力线与铝板垂直相交,铝板即感应而生电流,因而产生驱动力。由于线性感应马达的定子装在列车上,较导轨短,因此线性感应马达又称为“短定子线性马达”(short-stator motor);线性同步马达的原理则是将超导电磁石装于列车上 (当作转子),轨道上则装有三相电枢线圈 (作为定子),当轨道上的线圈供应以可变周波数的三相交流电时,即能驱动车辆。由于车辆移动的速度系依与三相交流电周波数成比例的同步速度移动,故称为线性同步马达,而又由于线性同步马达的定子装于轨道上,与轨道同长,故线性同步马达又称为“长定子线性马达”(long-stator motor)。传统轨道运输系统由于使用专用轨道,并以钢轮作为支撑与导引,因此随着速度的增加,行驶阻力会递增,而牵引力则递减,列车行驶阻力大于牵引力时即无法再加速,故一直无法突破地面运输系统理论上最高速度每小时375公里的瓶颈 [1]。虽然法国tgv曾创下传统轨道运输系统时速515.3公里的世界纪录,但因轮轨材料会有过热疲乏的问题,故现今德、法、西、日等国之高铁商业营运时速均不超过300公里。因此,如要进一步提升车辆速度,必须放弃传统以车轮行驶之方式,而采用“磁力悬浮”(magnetic levitation,简称“磁浮”maglev) 的方式,使列车浮离车道行驶,以减少摩擦力、大幅提高车辆的速度。此一浮离车道的作法,除不会造成噪音或空气污染外,并可增进能源使用之效率。另外采用“线性马达”(linear motor) 亦可加快该磁浮运输系统的速度,因此使用线性马达的磁浮运输系统应运而生。所谓磁浮运输系统就是利用磁力相吸或相斥的原理,使列车浮离车道,此磁力的来源可分为“常电导磁石”(permanent magnets) 或“超导磁石”(super conducting magnets, scm)。所谓的常电导磁石就是一般的电磁铁,即只有通电时才具有磁性,电流一切断则磁性消失,由于列车在极高速时集电困难,故常电导磁石仅能适用于采用磁力相斥原理、速度相对较慢 (约300kph) 的磁浮列车;至于速度高达500kph以上的磁浮列车 (利用磁力相吸原理),就非使用通一次电就永久具有磁性 (因此列车可以不用集电) 之超导磁石不可。因磁浮运输系统是利用磁力相吸或相斥的原理,故导致其分为“电动悬浮”(electrodynamic suspension, eds) 与“电磁悬浮”(electromagnetic suspension, ems) 两种型态。电动悬浮 (eds) 是利用同性相斥的原理,当列车经由外力而移动,装置于列车上的常电导磁石产生移动磁场,而在轨道上的线圈产生感应电流,此电流再生磁场,由于此二磁场方向相同,故列车与轨道间产生互斥力,列车随即由此互斥力举升而悬浮。因列车的悬浮是靠两磁场作用力相互平衡而达成,故其悬浮高度可固定不变 (约10 ~ 15mm),列车即因此具有相当之稳定性。此外,列车必须先以其他方式启动,其所带之磁场才能产生感应电流与磁场,车辆才会悬浮;因此,列车必须装置车轮以便“起飞”与“降落”之用,当速度达40kph以上时,列车开始悬浮 (即“起飞”),车轮自动收起;同理当速度渐减不再悬浮时,车轮自动放下以便滑行 (即“降落”)。通常采用电动悬浮 (eds) 的系统,只能以“线性同步马达”(linear synchronous motor, lsm) 作为推进系统,且其速度相对较慢 (约300kph),图1即显示电动悬浮系统 (eds) 与线性同步马达 (lsm) 之组合。电动悬浮系统 (eds) 与线性同步马达 (lsm) 之组合 [1]电磁悬浮 (ems) 则是利用异性相吸的原理,列车两侧向导轨环抱 (类似跨座式单轨系统),列车环抱的下部装有电磁石,导轨的底部装有钢板代替线圈,此时导轨之钢板在上,而列车之电磁石在下,当通电励磁时,电磁石产生之磁场吸引力吸引列车向上,列车因重力而下沉,两力平衡时使列车与导轨间产生间隙 (gap),列车即因此悬浮,其悬浮高度 (约10 ~ 15mm) 因磁力强弱而产生变化,故磁场之励磁电流须采封闭回路以保持磁力稳定。此外,列车一开始 (速度为零时) 即可产生悬浮,因此列车不须装置车轮。通常采用电磁悬浮 (ems) 的系统,可采用“线性感应马达”(linear induction motor, lim) 或线性同步马达 (lsm) 作为推进系统,其速度可高达500kph以上,图2即显示电磁悬浮系统 (ems) 与线性感应马达 (lim) 之组合。

文章TAG:线性  线性马达  什么  iphone  线性马达  iphone线性马达  耐用吗  
下一篇