本文目录一览

1,红外光谱怎么看

主要就是看几个常见的典型的峰,像是T在1700附近是羰基峰什么的。要想通过红外判断化合物的准确结构不太可能的,建议做核磁。

红外光谱怎么看

2,红外光谱的原理

当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。

红外光谱的原理

3,红外光谱怎么回事

红外光谱(infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。

红外光谱怎么回事

4,红外光谱的工作原理

红外光谱基本原理 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。  红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。  由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。  分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。

5,红外光谱能够提供哪些化学结构信息

能得到一些特征官能团结果。此外,如果待测物质是较纯净的。可以直接对照标准谱库,确定主要成分就是么么化合物。如果待测物不是纯净的,也能由一些特征官能团判断可能含有那些物质。红外光谱 (Infrared Spectroscopy, IR) 的研究始于 20 世纪初,自1940 年红外光谱仪问世,红外光谱在有机化学研究中广泛应用。新技术 (如发射光谱、光声光谱、色红联用等) 出现,使红外光谱技术得到发展。可以用来检测物质具有的化学键及官能团,可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
可以提供化学键以及官能团的种类和官能团的数量,主要是有机物。用红外光照射有机物分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。红外谱带的强度是一个振动跃迁概率的量度,而跃迁概率与分子振动时偶极矩的变化大小有关,偶极矩变化愈大,谱带强度愈大。偶极矩的变化与基团本身固有的偶极矩有关,故基团极性越强,振动时偶极矩变化越大,吸收谱带越强;分子的对称性越高,振动时偶极矩变化越小,吸收谱带越弱。红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。
你的问题太笼统了,中红外推荐你看《傅里叶变换红外光谱仪》是由翁诗甫编写,附录很多官能团对应的波数;近红外推荐你看近红外光谱解析实用指南((美)杰尔·沃克曼)。相信看完两本书,就能很好解答你的问题。

6,为什么红外光谱与拉曼光谱出峰位置相同

红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。   拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。   相同点在于:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级   不同点在于:两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。   本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。   主要区别:(1)光谱的选择性法则是不一样的,红外光谱是要求分子的偶极矩发生变化才能测到,而拉曼是分子的极化性发生变化才能测到;   (2)红外很容易测量,而且信号很好,而拉曼的信号很弱;   (3)使用的波长范围不一样,红外光谱使用的是红外光,尤其是中红外,而拉曼可选择的波长很多,从可见光到 NIR,都可以使用;   (4)拉曼和红外大多数时候都是互相补充的,就是说,红外强,拉曼弱,反之也是如此;   (5)在鉴定有机化合物方面,红外光谱具有较大的优势,无机化合物的拉曼光谱信息量比红外光谱的大。   (6)理论基础和检测方法存在明显的不同。我们说物质分子总在不停地振动,这种振动是由各种简正振动叠加而成的。当简正振动能产生偶极矩的变化时,它能吸收相应的红外光,即这种简正振动具有红外活性;具有拉曼活性的简正振动,在振动时能产生极化度的变化,它能与入射光子产生能量交换,使散射光子的能量与入射光子的能量产生差别,这种能量的差别称为拉曼位移,它与分子振动的能级有关,拉曼位移的能量水平也处于红外光谱区。   红外光谱法的检测直接用红外光检测处于红外区的分子的振动和转动能量;而拉曼光谱法的检测是用可见激光来检测处于红外区的分子的振动和转动能量,它是一种间接的检测方法。

文章TAG:红外光谱  红外  怎么  红外光谱  
下一篇