本文目录一览

1,为什么要进行数据流程分析

全面质量管理重要观点之一:以数据说话的观点
全面质量管理中其中就有“以数据说话的原则”,要想以数据说话就应当对数据流程和结果进行分析

为什么要进行数据流程分析

2,输入数据分析的基本步骤有哪些

典型的数据分析可能包含以下三个步:1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探 索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。数据分析过程实施数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。
数据是收集起来的,不是输入面板数据分析,关键不是输入数据,是如何去分析,如何去判断我经常帮别人做这类的数据统计分析的

输入数据分析的基本步骤有哪些

3,数据处理与分析的步骤是怎么样

一个数据分析流程,应包括以下几个方面:? 业务建模。? 经验分析。? 数据准备。? 数据处理。? 数据分析与展现。? 专业报告。? 持续验证与跟踪。
数据处理与分析分为五步:第一步:确定客户的数据需求比较典型的场景是我们需要针对企业的数据进行分析,比如公司通常会有销售数据、用户数据、运营数据、产品生产数据……需要从这些数据里获得哪些有用的信息,对策略的制定进行指导呢?又比如需要做的是一份市场调研或者行业分析,那么需要知道获得关于这个行业的哪些信息。第二步:根据客户需求进行数据采集采集来自网络爬虫、结构化数据、本地数据、物联网设备、人工录入五个数据源的数据,为客户提供定制化数据采集。目的是根据客户的需求,定制数据采集,构建单一数据源。第三步:数据预处理现实世界中数据大体上都是不完整,不一致的脏数据,无法直接进行数据分析,或分析结果差强人意。数据预处理有多种方法:数据清理,数据集成,数据变换,数据归约等。把这些影响分析的数据处理好,才能获得更加精确地分析结果。第四步:数据分析与建模数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据模型是对信息系统中客观事物及其联系的数据描述,它是复杂的数据关系之间的一个整体逻辑结构图。数据模型不但提供了整个组织藉以收集数据的基础,它还与组织中其他模型一起,精确恰当地记录业务需求,并支持信息系统不断地发展和完善,以满足不断变化的业务需求。第五步:数据可视化及数据报告的撰写分析结果最直接的结果是统计量的描述和统计量的展示。数据分析报告不仅是分析结果的直接呈现,还是对相关情况的一个全面的认识。
写出你用了什么控件,比如timer,是用来控制显示时间,以及走表的. label是显示. 闹钟的原理就是通过time(now)来显示时间,当输入时间(text.text)等于当前时间触发事件. 至于后面的什么现象分析和结论则随便写写.. 报告不难,重要在于写出整个程序的思路就行

数据处理与分析的步骤是怎么样

4,数据分析步骤是怎样的

首先确定分析目的其次根据目的确定需要哪些什么样的数据来实现你的目的第三 根据目的、数据类型等来确定分析方法第四进行分析
数据分析有极广泛的应用范围,这是一个扫盲贴。典型的数据分析可能包含以下三个步:[list]1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。数据分析过程实施数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。一、识别信息需求识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。二、收集数据有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数据的内容、渠道、方法进行策划。策划时应考虑:[list]①将识别的需求转化为具体的要求,如评价供方时,需要收集的数据可能包括其过程能力、测量系统不确定度等相关数据;②明确由谁在何时何处,通过何种渠道和方法收集数据;③记录表应便于使用;④采取有效措施,防止数据丢失和虚假数据对系统的干扰。三、分析数据分析数据是将收集的数据通过加工、整理和分析、使其转化为信息,通常用方法有:[list]老七种工具,即排列图、因果图、分层法、调查表、散步图、直方图、控制图;新七种工具,即关联图、系统图、矩阵图、kj法、计划评审技术、pdpc法、矩阵数据图;四、数据分析过程的改进数据分析是质量管理体系的基础。组织的管理者应在适当时,通过对以下问题的分析,评估其有效性:[list]①提供决策的信息是否充分、可信,是否存在因信息不足、失准、滞后而导致决策失误的问题;②信息对持续改进质量管理体系、过程、产品所发挥的作用是否与期望值一致,是否在产品实现过程中有效运用数据分析;③收集数据的目的是否明确,收集的数据是否真实和充分,信息渠道是否畅通;④数据分析方法是否合理,是否将风险控制在可接受的范围;⑤数据分析所需资源是否得到保障。

5,数据流程分析的包括的内容

数据来源:数据分析的对象是数据,数据从哪来?数据本身的准确性从根本上影响着分析结果的有效性,所以确保有效、靠谱的数据来源至关重要。本人认为数据来源无非以下三种:a.自有数据分析系统——公司自有的数据是最源质化的数据,也是最可靠、最全面的。一般而言,有条件的情况下都是以内部数据为准;当然,创业型的微型公司大多都直接数据库导出数据,还是要依赖产品经理二次加工的。b.定量/定性调研——没有全面的数据咋办?或者说想要分析的数据无法统计?那么,拿起电话、走上街头、发放问卷都不失为一种可行的办法。定量数据排斥主管因素,定性数据吸纳主管因素。事实上,定性数据存在诸多不确定性,但也存在一个其他数据指标不具备的优势——那是与真实用户交流所得,有血有肉。c.专业调研机构——知名调研机构,比如:艾瑞咨询、百度统计、易观智库、199IT-互联网数据中心。一般而言,权威结构统计调研的数据还是具有极强的参考性的,但也不能完全免于主观因素。数据分析:单纯的数据并不能为给我们带来太多结论性的东西,还是要借助一定的方法和手段将数据变得更加生动和有意义。a.集成开发数据分析系统——将所需的数据指标以技术手段直接设计成产品功能,可以定期定量地直接生成导出BI报表。b.手动数据加工——面对元数据而不是现成的结论性数据,产品经理只能亲自操刀借助EXCEL各种函数。面对海量数据,心态很重要!c.委托分析机构——有钱、任性、够叼,请人分析。如果事事都依靠别人,那么产品经理就瞬间失去价值了...分析方法:有效的数据分析方法能够深度挖掘数据的价值,精益数据分析中大致介绍以下三种分析方法。a.市场细分(Segmentation)——市场细分就是一群拥有某种共同特征的划为一个样本,市场细分不尽可以应用于互联网产品,对任何行业、任何形式的产品都具有积极的参考意义。b.同期群分析(Coghort Analysis)——比较相似群体随时间的变化,同期群分析给我们提供了一个全新的视角。能够观察处于生命周期不同阶段用户的行为模式,而非忽略用户的行为的过程性。c.多变量测试(Multivariate Testing)——同时对多个因素进行分析,用统计学的方法剥离出单个影响要与结果中的某一项指标提升的关联性。同时改动产品的多个方面,看哪个与结果的相关性最大。
数据流程分析主要包括对信息的流动、变换、存贮等的分析。其目的是要发现和解决数据流动中的问题。这些问题有:数据流程不畅,前后数据不匹配,数据处理过程不合理等等。问题产生的原因有的是属于现行管理混乱,数据处理流程本身有问题,有的也可能是我们调查了解数据流程有误或作图有误。调查的目的就是要尽量地暴露系统存在的问题,并找出加以解决的方法。
数据流程分析:是把数据在组织(或原系统)内部的流动情况抽象地独立出来,舍去了具体组织机构、信息载体、处理工作、物资、材料等,单从数据流动过程来考查实际业务的数据处理模式。主要包括对信息的流动、传递、处理、存储等的分析。

6,如何进行有效的数据分析

首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析;什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。专业一点讲:数据分析就是适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总、理解和消化,以求最大化的开发数据的功能,发挥数据的作用。那么,我们做数据 分析的目的是什么呢?事实上,数据分析就是为了提取有用的信息和形成结论而对数据加以详细的研究和概括总结的过程。数据分析可以分为:描述性数据分析、探索性数据分析、验证性数据分析工作中我们运用数据分析的作用有哪些?1、现状分析:就是企业运营状况的分析,主要是各项指标的监控以及日报、周报、月报等2、原因分析:需求分析,多数是针对运营中出现的问题进行剖析,找出出现问题的因素以便于解决问题3、预测分析:针对以后的运营情况做出分析报告,对公司以后的发展趋势做出有效的预测,对公司的发展目标和策略制定做出有力的支撑。最重要的一点:我们如何做数据分析呢,换一句话说就是如何进行数据分析,是怎样的流程?然后,我们来看数据分析的六部曲1、明确分析目的和思路:这一定很重要,你想通过数据分析得到什么,你想通过数据分析告诉别人什么,这是你做数据分析的首要问题,分析不能是漫无目的的,一定要明确思路,有目的性、有计划性的去做数据分析。找好角度、指标、以及分析逻辑尤为重要。2、数据收集,这里不做过多的说明,一般情况下,数据来源都会可靠有效。我们要做的只是把我们需求的数据get即可。3、数据处理:主要包括数据清洗、数据转化、数据提取、数据计算等方法,数据分析的前提是要保证数据质量,如果数据质量无法保证,分析出来的结果也没法得到有效的利用,甚至会对决策者造成误导的行为。4、数据分析:首先要明确数据处理和数据分析的区别:数据处理只是数据分析的基础,我们做数据处理就是为了保证数据形式合适,保证数据的一致性和有效性。5、数据展现:数据展现就是把数据分析的结果,用可视化的图标形式展现出来,用一种简单易懂的方式表达出你分析的观点6、撰写报告:数据分析报告其实就是对整个数据分析过程的一个总结与呈现,通过报告把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。
付费内容限时免费查看回答你好,一探讨需求在开始分析数据或深入研究分析技术之前,与团队里的所有小伙伴一起坐下来,确定主要活动或战略目标是很关键的,需要从根本上了解哪些类型最有利于发展,或哪些数据对发展的前景最有帮助。提问有效的数据分析回答2确定问题一旦确定了核心目标,你应该考虑哪些问题需要被回答来帮助你完成你的目标。为了帮助提出正确的问题并确保数据有用,提出问题、寻解答案是必不可少的。3收集数据在为数据分析方法提供了真正的指导,并知道了需要回答哪些问题来获取可用信息中的最佳价值后,应该决定最有价值的数据源并开始收集,这是所有数据分析技术中最基础的一步。4设置KPI设置一系列关键绩效指标(KPI),这些指标可以在许多关键领域中跟踪,衡量和塑造您的进度。KPI对于定性研究中的数据分析方法和定量研究中的数据分析方法都是至关重要的,它对于督促自己及时完成数据分析目标有着重要作用。五忽略无用数据六统计分析更多3条
要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具;。可以到天池大赛上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,九道门之类的,如果要成为大数据分析师的话就要时间沉定,或者让老师带你,像我就是进到决明后由老师带了半年,现在基本上已经能熟练的搞这一套了。
借助工具未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
有效的数据分析,第一步需要先明确你的数据分析的目的,是想通过数据分析验证什么结论 或者是找出什么结果或未知的东西,在确定目的的同时,基本上可以对数据分析需要采取的方法有了一个大概的确定。第二步,根据目的 来有针对性的设计指标和收集数据。这一步的指标和数据类型设计非常关键,所以需要熟悉各种数据类型 以及一般的数据分析对类型的要求。设计好指标后,根据指标进行数据的收集,收集的方法可能有直接从一些官方权威机构或者网站获取,也可能需要自己通过调查获取等第三步,对收集回来的数据进行汇总、整理,使得数据干净,没有杂乱数据干扰第四步,选用合适的数据分析工具 将数据导入,同时根据目的确定方法进行分析即可

文章TAG:数据流程分析  为什么要进行数据流程分析  
下一篇