1,人工智能的前景怎么样

人工智能的前景还是非常好的,可以从两个方面来看:一是发展空间、二是应用情况一、发展空间:现在我们日常生活中接触的人工智能都是通过大数据沉淀的算法模型然后套用的结果,就类似于鹦鹉学舌,并非真正的“智能”。所以要达到可以深度学习的人工智能,还需要继续发展,达到可以解决不了问题主动创造解决问题的工具的程度,是需要深度学习来完成的,就需要强智能的发展。二、应用情况就目前来看,人工智能的应用是非常好的,确实帮助了人们的工作、学习,提升了人们的生活水平和工作效率,所以在进入的研究和使用上也都会继续加大力度。目前在人脸识别、路线规划、AI视觉等很多方面都有用到人工智能,并给人们的生活带来了极大的便利。所以,人工智能的前景还是非常好,成一个上升趋势的。
照学技术建议根据自身的兴趣爱好去学习,个人建议学习电脑技术相关的专业,现在电脑行业属于热门专业,比如UI设计、动漫设计、平面设计、影视后期、室内设计、电子商务、软件开发、编程、电子竞技等等专业,就业前景及其薪资待遇都是相当不错的。重要有部分学校提倡技能加学历。在学习技能的同时学历也得到了提升。
很不错的专业啊,可以考虑学习一下的~!
ml其实是很好的技术。但是大家目前还没有找到很好的把它大规模变现的手段。很多需求看起来很炫,但是赚不到钱的需求都是伪需求。如果ml还是一直变现不了的话,可能未来招聘会越来越严峻。然后我个人认为比较靠谱的几个企业,互联网企业做推荐系统的其实都很靠谱,我个人了解的,海康和图森还是比较靠谱的。可能还有一些其他公司,但是由于我个人眼界限制看不到而已。至于不太靠谱的企业,总的来说就是能不能看到变现的可能。

人工智能的前景怎么样

2,人工智能的就业前景

人工智能英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。那么人工智能的就业方向和前景怎么样呢?人工智能就业方向1、搜索方向:搜索是人工智能的重要应用领域,目前初步实现的人工智能产品例如小度小度、小爱同学、天猫精灵等,都是建立在智能搜索和语音搜索的基础之上的。此外图片搜索已经基本实现,精准度可以达到90%以上,例如百度识图、作业帮搜题等。视频搜索也是搜索领域进一步研究的方向。2、计算机视觉和模式识别方向:这个方向是从技术层面划定的方向,其应用领域包括:智能办公、智能交通、智慧城市等等。技术的表现层有指纹识别(常见如智能办公中的打卡、公安系统中的案件处理)、人脸识别(常见如各种互联网工具认证、规模化人员管理)、虹膜识别(常见如影视剧中密码锁)、车牌识别(交通系统中的违章判定以及电子化处理)等等。3、医学图像处理:医疗设备和医疗器械很多都会涉及到图像处理和成像技术,诸如西门子、飞利浦等企业都会有专门的人工智能研发部门。4、无人驾驶领域:无人驾驶是近些年国内比较热点的话题,也是人工智能重点应用领域之一,某些汽车品牌已经在无人驾驶领域得到了应用并且真正获得上路资格,但是由于目前的人工智能技术并无法支撑真正的无人驾驶,因此在无人驾驶车辆出现事故后,无人驾驶的应用目前再次回归实验室。5、智慧生活和智慧城市等:阿里集团已经与杭州签订智慧城市的合作协议。包括交通、商业、生活的诸多领域将会出现人工智能的影子。此外智慧生活包括智能家居等领域也已经逐步推广应用于人们的日常生活中。人工智能发展前景第一:智能化是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。第二:产业互联网的发展必然会带动人工智能的发展。互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业,人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。第三:人工智能技术将成为职场人的必备技能之一。随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求,就是需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。

人工智能的就业前景

3,人脸识别技术在国内有发展趋势吗

现在人脸识别技术正处于很火热的阶段,技术也一直在成熟中。
什么是人脸识别 人脸识别,特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。 人脸识别概述 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。 人脸识别的优势 人脸识别的优势在于其自然性和不被被测个体察觉的特点。 所谓自然性,是指该识别方式同人类(甚至其他生物)进行个体识别时所利用的生物特征相同。例如人脸识别,人类也是通过观察比较人脸区分和确认身份的,另外具有自然性的识别还有语音识别、体形识别等,而指纹识别、虹膜识别等都不具有自然性,因为人类或者其他生物并不通过此类生物特征区别个体。 不被察觉的特点对于一种识别方法也很重要,这会使该识别方法不令人反感,并且因为不容易引起人的注意而不容易被欺骗。人脸识别具有这方面的特点,它完全利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别,需要利用电子压力传感器采集指纹,或者利用红外线采集虹膜图像,这些特殊的采集方式很容易被人察觉,从而更有可能被伪装欺骗。 人脸识别的困难 虽然人脸识别有很多其他识别无法比拟的优点,但是它本身也存在许多困难。人脸识别被认为是生物特征识别领域甚至人工智能领域最困难的研究课题之一。人脸识别的困难主要是人脸作为生物特征的特点所带来的。人脸在视觉上的特点是: 第一,不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的; 第二,人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件(例如白天和夜晚,室内和室外等)、人脸的很多遮盖物(例如口罩、墨镜、头发、胡须等)、年龄等多方面因素的影响。 在人脸识别中,第一类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第一类变化为类间变化(inter-class difference),而称第二类变化为类内变化(intra-class difference)。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。 人脸识别的技术细节 一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。 人脸识别的算法种类 基于人脸部件的多特征识别算法(mmp-pca recognition algorithms)。 基于人脸特征点的识别算法(feature-based recognition algorithms)。 基于整幅人脸图像的识别算法(appearance-based recognition algorithms)。 基于模板的识别算法(template-based recognition algorithms)。 利用神经网络进行识别的算法(recognition algorithms using neural network)。 人脸识别的应用 人脸识别的应用主要有: ·公安刑侦破案:通过查询目标人像数据寻找数据库中是否存在重点人口基本信息。例如在机场或车站安装系统以抓捕在逃案犯。 ·门禁系统:受安全保护的地区可以通过人脸识别辨识试图进入者的身份。 ·摄像监视系统:例如在机场、体育场、超级市场等公共场所对人群进行监视,以达到身份识别的目的。例如在机场安装监视系统以防止恐怖分子登机。 ·网络应用:利用人脸识别辅助信用卡网络支付,以防止非信用卡的拥有者使用信用卡等。 人脸识别软件 人脸识别软件顺应当前的要求,慢慢走上了历史的舞台。knowu (基于视频的人脸识别系统), 是当前不多的人脸识别软件中具有代表性的一款,它是由个人开发编写的,并且随着版本的升级,逐渐具有了商业开发的色彩,在网上已经免费发布试用了。 人脸识别系统 脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。人脸因具有不可复制、采集方便、不需要被拍者的配合而深受欢迎。人脸识别系统具有广泛的应用:人脸识别出入管理系统、人脸识别门禁考勤系统、 人脸识别监控管理、人脸识别电脑安全防范、人脸识别照片搜索、人脸识别来防登记等等。

人脸识别技术在国内有发展趋势吗


文章TAG:人工  人工智能  智能  智能视觉  人工智能视觉识别技术未来  
下一篇