本文目录一览

1,图像边缘检测算法

边缘检测很多方法,你可以找一本数字图像书籍看看,看你需要时MALAB,还是VC++。我曾曾经回答过一个有关canny算子的边缘处理,canny算子是最为经典的边缘检测,效果最好但是其消耗的时间最长。你可以参考参考 http://wenwen.sogou.com/z/q712537975.htm

图像边缘检测算法

2,图像边缘检测有哪几种方法

sobel算子应该是算比较简单的,canny也算是比较常用的 ,pca我见过一般都是人脸的检测,别的地方用的,还真不多吧,可能我水平还是有限,我刚搜了一下就有一篇文章是是关于PCA用于图像边缘的检测,日本琉球大学的,已经发给你了。PCA的主要作用就是对多角度的测量数据进行观察,去掉无用的数据,只保留主元,减小计算量,最合适的地方就是人脸识别,人脸肯定是有扭动的角度的。csdn上不少pca代码。边缘检测还是常规点好,那些sobel,roberts,canny等等多么强大好用,为啥必须用pca啊?有篇文章 关于pca来做图像特征的,可能有包含边缘的部分,自己找着下载看吧,在SPRINGER上 .
这个你不能一开始就是用vhdl设计,我做循环频谱处理,给你说过程,也许对你有用,先用matlab仿真,这一步很重要验证你的方法是不是正确的,这也为你后续的vhdl设计测试做铺垫,因为你设计的vhdl代码需要测试数据,那么就从这里来, 第二步,使用c语言编写算法,这一步的工作是让你熟悉图像边缘检测算法的每一个步骤是如何做到的,因为vhdl是电路标书语言,要对每一bit都要清楚,c语言的过程可以让你在设计vhdl之前就清楚了,最后一步是转换,只有前两个步骤都做好了,你才可以进行vhdl设计。要不然你设计好了vhdl代码,你测试都不知道怎么测试,哪里出错你都不知道,有了c语言的过程,你可以对某一个子模块进行调试。

图像边缘检测有哪几种方法

3,边缘检测的边缘检测

所谓边缘是指其周围像素灰度急剧变化的那些象素的集合,它是图像最基本的特征。边缘存在于目标、背景和区域之间,所以,它是图像分割所依赖的最重要的依据。由于边缘是位置的标志,对灰度的变化不敏感,,因此,边缘也是图像匹配的重要的特征。  边缘检测和区域划分是图像分割的两种不同的方法,二者具有相互补充的特点。在边缘检测中,是提取图像中不连续部分的特征,根据闭合的边缘确定区域。而在区域划分中,是把图像分割成特征相同的区域,区域之间的边界就是边缘。由于边缘检测方法不需要将图像逐个像素地分割,因此更适合大图像的分割。   边缘大致可以分为两种,一种是阶跃状边缘,边缘两边像素的灰度值明显不同;另一种为屋顶状边缘,边缘处于灰度值由小到大再到小的变化转折点处。 边缘检测的主要工具是边缘检测模板。我们以一个一维模板为例来考察边缘检测模板是如何作用的。  模板的作用是将右邻点的灰度值减去左邻点的灰度值作为该点的灰度值。在灰度相近的区域内,这么做的结果使得该点的灰度值接近于0;而在边缘附近,灰度值有明显的跳变,这么做的结果使得该点的灰度值很大,这样就出现了上面的结果。这种模板就是一种边缘检测器,它在数学上的涵义是一种基于梯度的滤波器,习惯上又称边缘算子。我们知道,梯度是有方向的,和边缘的方向总是垂直的。模板 是水平方向的,而上面那幅图象的边缘恰好是垂直方向的,使用模板 就可以将它检测出来。如果图象的边缘是水平方向的,我们可以用梯度是垂直  方向的模板 检测它的边缘。如果图象的边缘是45。方向的,我们可以用模板检测它的边缘。常用的边缘检测模板有Laplacian算子、Roberts算子、Sobel算子、log(Laplacian-Gauss)算子、Kirsch算子和Prewitt算子等。

边缘检测的边缘检测

4,边缘检测的理论依据是什么有哪些方法各有什么特点

就是通过一些临近像素相关算法突出灰度变化比较大的部分。变化平缓的取值低,变化越剧烈取值越高。比如有卷积算法,具体计算方法,有拉普拉斯算子、高斯算子等的应用。
如果将边缘认为是一定数量点亮度发生变化的地方,那么边缘检测大体上就是计算这个亮度变化的导数。为简化起见,我们可以先在一维空间分析边缘检测。在这个例子中,我们的数据是一行不同点亮度的数据。例如,在下面的1维数据中我们可以直观地说在第4与第5个点之间有一个边界:除非场景中的物体非常简单并且照明条件得到了很好的控制,否则确定一个用来判断两个相邻点之间有多大的亮度变化才算是有边界的阈值,并不是一件容易的事。实际上,这也是为什么边缘检测不是一个微不足道问题的原因之一。检测方法有许多用于边缘检测的方法, 他们大致可分为两类:基于搜索和基于零交叉。基于搜索的边缘检测方法首先计算边缘强度, 通常用一阶导数表示, 例如梯度模,然后,用计算估计边缘的局部方向, 通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。基于零交叉的方法找到由图像得到的二阶导数的零交叉点来定位边缘。 通常用拉普拉斯算子或非线性微分方程的零交叉点。滤波做为边缘检测的预处理通常是必要的,通常采用高斯滤波。已发表的边缘检测方法应用计算边界强度的度量,这与平滑滤波有本质的不同。 正如许多边缘检测方法依赖于图像梯度的计算,他们用不同种类的滤波器来估计x-方向和y-方向的梯度。计算一阶导数许多边缘检测操作都是基于亮度的一阶导数——这样就得到了原始数据亮度的梯度。使用这个信息我们能够在图像的亮度梯度中搜寻峰值。如果 i(x) 表示点 x 的亮度,i′(x) 表示点 x 的一阶导数(亮度梯度),这样我们就会发现:对于更高性能的图像处理来说,一阶导数能够通过带有掩码的原始数据(1维)卷积计算得到。计算二阶导数其它一些边缘检测操作是基于亮度的二阶导数。这实质上是亮度梯度的变化率。在理想的连续变化情况下,在二阶导数中检测过零点将得到梯度中的局部最大值。另一方面,二阶导数中的峰值检测是边线检测,只要图像操作使用一个合适的尺度表示。如上所述,边线是双重边缘,这样我们就可以在边线的一边看到一个亮度梯度,而在另一边看到相反的梯度。这样如果图像中有边线出现的话我们就能在亮度梯度上看到非常大的变化。为了找到这些边线,我们可以在图像亮度的二阶导数中寻找过零点。如果 i(x) 表示点 x 的亮度,i′′(x) 表示点 x 亮度的二阶导数,那么:同样许多算法也使用卷积掩码快速处理图像数据:步骤:①滤波:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。需要指出,大多数滤波器在降低噪声的同时也导致了边缘强度的损失,因此,增强边缘和降低噪声之间需要折中。②增强:增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将邻域(或局部)强度值有显著变化的点突显出来。边缘增强一般是通过计算梯度幅值来完成的。③检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点。最简单的边缘检测判据是梯度幅值阈值判据。④定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来。在边缘检测算法中,前三个步骤用得十分普遍。这是因为大多数场合下,仅仅需要边缘检测器指出边缘出现在图像某一像素点的附近,而没有必要指出边缘的精确位置或方向。边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线。我们将边缘定义为图像中灰度发生急剧变化的区域边界。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以用局部图像微分技术来获得边缘检测算子。经典的边缘检测方法,是通过对原始图像中像素的某小邻域构造边缘检测算子来达到检测边缘这一目的的。

文章TAG:边缘  边缘检测  检测  图像  边缘检测  
下一篇