本文目录一览

1,计算机关于机器数的计算

补码:10001111原码:11110001=-113补码第一位为符号位,由于补码是通过原码取反加1后得到,所以把其他4个1放在最后4位.因为变回原码后,1越是在高位,数就越小. 我也不知道对不,给你参考.

计算机关于机器数的计算

2,什么是机器数

机器数是将符号"数字化"的数,是数字在计算机中的二进制表示形式。机器数有2个特点:一是符号数字化,二是其数的大小受机器字长的限制。采用反码运算较好的解决了原码运算所遇到的困难或问题,但由于循环进位需要二次算术相加,延长了计算时间,这同样给电路带来麻烦。而采用下述的补码运算则可避免循环进位的两次计算,同时,采用补码运算对溢出的判断也较采用反码简单的多,所以机器中的算术运算普遍采用补码运算。扩展资料机器数有两个基本特点:1、数的符号数值化。实用的数据有正数和负数,由于计算机内部的硬件只能表示两种物理状态(用0和1表示),因此实用数据的正号“+”或负号“-”,在机器里就用一位二进制的0或1来区别。通常这个符号放在二进制数的最高位,称符号位,以0代表符号“+”,以1代表符号“-”。因为有符号占据一位,数的形式值就不等于真正的数值,带符号位的机器数对应的数值称为机器数的真值。 例如二进制真值数-011011,它的机器数为 1011011。2、二进制的位数受机器设备的限制。机器内部设备一次能表示的二进制位数叫机器的字长,一台机器的字长是固定的。字长8位叫一个字节(Byte),机器字长一般都是字节的整数倍,如字长8位、16位、32位、64位。参考资料来源:百度百科-机器数

什么是机器数

3,简述机器数与真值的概念的意思

真值不好乱说,不过在C语言中所有不为零的数都是真。其它语言要看其具体规定了。至于机器码,要看什么类型变量了,正数的机器码就是原码,直接转成二进制就可以了,就是1,不同类型的变量或者不同机器,不同编译器可能位数不同,就在前面补零就可以了,因为正数最高位符号位就是0.

简述机器数与真值的概念的意思

4,机器数就是真值的原码表示法

不带符号的数是数的绝对值,在绝对值前加上表示正负的符号就成了符号数。直接用正号“+”和负号“-”来表示其正负的二进制数叫做符号数的真值。在计算机中不仅用0,1编码的形式表示一个数的数值部分,正、负号亦同样用0,1编码表示。把符号数值化以后,就能将它用于机器中。我们把一个数在机器内的表示形式称为机器数。而这个数本身就是该机器数的真值。“01101”和“11101”是两个机器数,而它们的真值分别为+1101和-1101。

5,用110表示物体数量是什么意思

就是说用整数1到10来表示有几个物体。表示物体个数的1,2,3,4,5都是自然数,是数学数字最基本的组成部分。也属于实数。在计算机中,无论数值还是数的符号,都只能用0、1来表示。通常专门用一个数的最高位作为符号位: 0表示正数,1表示负数。这种在计算机中使用的、连同符号位一起数字化了的数,称为机器数。机器数所表示的真实值则叫真值。例如机器数10110101所表示的真值为-53(十进制)或-0110101(二进制);机器数00101010的真值为+42(十进制)或+0101010(二进制)。可见,在机器数中,用0、1取代了真值的正、负号。有符号数的机器数表示方法实际上,机器数可以有不同的表示方法。对有符号数,机器数常用的表示方法有原码、反码、补码三种。1) 原码上述机器数表示方法,即最高位表示符号、数值位用二进制绝对值表示的方法,便为原码表示方法。换言之,设机器数位长为n。

6,机器数00101101补码是什么

一般来说,机器数就是补码。如果不是补码,楼主就应该说明,这个机器数,究竟是什么码。
因为数据在计算机中都是以二进制表示的,编译系统对于不同类型的变量分配不同大小的存贮空间,制定不同的取值范围。比如整型在计算机中的存储用2个字节16位的存储空间,其中的最高位代表符号位的,符号位为0表示的是正数,符号位为1表示为负数,整型数据在内存中以二进制的补码存放。 以10和-10说明正数在内存中的存放形式: 十进制 10 -10 二进制原码 0000000000001010 1000000000001010 二进制反码 0000000000001010 1111111111110101 二进制补码 0000000000001010 1111111111110110 由于十进制数101转换为2进制数为1100101由于此数为负数,所以首位为1,写成标准的8位形式为:原码:11100101反码:10011010补码:10011011
答案为c解析,正数的补码是其自身即就是其二进制。 负数的补码是符号位不变,其余位取反再加1

7,机器数的原码反码补码

D)补码` 计算机中的存储系统都是用2进制储存的,对我们输入的每一个信息它都会自动转变成二进制的形式,而二进制在存储的时候就会用到原码,反码和补码 例如:输入25 原码就是:0000000000011001 反码: 1111111111100110 补码: 1111111111100111 ~ 数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题. 数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为 (-127~-0 +0~127)共256个. 有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits ( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10 (00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确. 因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算: ( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10 (00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题. ( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10 (00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确 问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大). 于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为: (-128~0~127)共256个. 注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下: ( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10 (00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确 ( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10 (00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确 所以补码的设计目的是: ⑴使符号位能与有效值部分一起参加运算,从而简化运算规则. ⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计 所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码

文章TAG:机器数  计算机关于机器数的计算  
下一篇