1,大数据分析主要有哪些核心技术

简单说有三大核心技术:拿数据,算数据,卖数据
转换率

大数据分析主要有哪些核心技术

2,大数据都需要什么技术

1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。2、数据存取:关系数据库、NOSQL、SQL等。3、基础架构:云存储、分布式文件存储等。4、数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。6、数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)7、模型预测:预测模型、机器学习、建模仿真。8、结果呈现:云计算、标签云、关系图等。

大数据都需要什么技术

3,大数据分析的技术有哪些

简单说有三大核心技术:拿数据,算数据,卖数据。首先做为大数据,拿不到大量数据都白扯。现在由于机器学习的兴起,以及万金油算法的崛起,导致算法地位下降,数据地位提高了。举个通俗的例子,就好比由于教育的发展,导致个人智力重要性降低,教育背景变重要了,因为一般人按标准流程读个书,就能比牛顿懂得多了。谷歌就说:拿牛逼的数据喂给一个一般的算法,很多情况下好于拿傻傻的数据喂给牛逼的算法。而且知不知道弄个牛逼算法有多困难?一般人连这个困难度都搞不清楚好不好……拿数据很重要,巧妇难为无米之炊呀!所以为什么好多公司要烧钱抢入口,抢用户,是为了争夺数据源呀!不过运营,和产品更关注这个,我是程序员,我不管……其次就是算数据,如果数据拿到直接就有价值地话,那也就不需要公司了,政府直接赚外快就好了。苹果落地都能看到,人家牛顿能整个万有引力,我就只能捡来吃掉,差距呀……所以数据在那里摆着,能挖出啥就各凭本事了。算数据就需要计算平台了,数据怎么存(HDFS, S3, HBase, Cassandra),怎么算(Hadoop, Spark)就靠咱们程序猿了……再次就是卖得出去才能变现,否则就是搞公益了,比如《疑犯追踪》里面的李四和大锤他们……见人所未见,预测未来并趋利避害才是智能的终极目标以及存在意义,对吧?这个得靠大家一块儿琢磨。其实我觉得最后那个才是“核心技术”,什么Spark,Storm,Deep-Learning,都是第二梯队的……当然,没有强大的算力做支撑,智能应该也无从说起吧。NoSQL,分布式计算,机器学习,还有新兴的实时流处理,可能还有别的。数据采集,数据存储,数据清洗,数据挖掘,数据可视化。数据采集有硬件采集,如OBD,有软件采集,如滴滴,淘宝。数据存储就包括NOSQL,hadoop等等。数据清洗包括语议分析,流媒体格式化等等。数据挖掘包括关联分析,相似度分析,距离分析,聚类分析等等。数据可视化就是WEB的了。

大数据分析的技术有哪些


文章TAG:大数据  数据  数据分析  分析  大数据分析需要哪些技术  
下一篇