1,如何进行大数据分析及处理

这个问题有点大哦这个可不是一两句话可以讲清楚明白的数据分析本身就已经挺复杂的了,要说大数据分析,那就更复杂了虽说只是多了一个“大”字,但是意义已经不同了大数据是一个非常系统的东西,大数据包含了很多的非机构化的数据比如说,图片、声音、视频,都属于大数据的原始数据,这些都要进行分析的那就涉及到了非机构化数据的结构化处理工作,是非常系统并负责的过程所以说,大数据分析和处理,是要经过学习,掌握了方法才能做到的

如何进行大数据分析及处理

2,大数据分析的分析步骤

大数据分析的五个基本方面1. Analytic Visualizations(可视化分析)  不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 2. Data Mining Algorithms(数据挖掘算法)  可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。 3. Predictive Analytic Capabilities(预测性分析能力)  数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。 4. Semantic Engines(语义引擎)  我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。 5. Data Quality and Master Data Management(数据质量和数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。 假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
大数据的含义 并非仅仅是指数据量非常庞大,同样是指数据的类别多样化,比如图片类信息、音频类信息、视频类信息、文字类信息等,同样被包含在大数据内。所以领域非常广,可以说以前传统意义上的各种信息分析,都包含在大数据分析的含义内。无论是现在流行的大数据分析还是传统的小数据分析,大致步骤都是一样的:首先你要确定你的分析目的是什么其次是根据分析目的确定分析思路,以及分析的内容、分析的方法第三是根据目的、思路、方法、内容 收集数据信息第四 是 采用确定的分析方法 进行相应的分析 以实现目的

大数据分析的分析步骤

3,大数据都体现在哪些方面

在过去几年,大数据的建设主要集中在物联网、云计算、移动互联网等基础领域,一些大数据起步较早、积累较深的行业领域,开始基于大数据的基础建设,开启了行业数据应用与价值挖掘之路。从数据的抽取、清洗等预处理,到数据存储及管理,再到数据分析挖掘,以及最终的可视化呈现。行业用户开始把注意力转向大数据真正的价值点——发现规律,提升决策效率与能力。这一年,他们在收集数据上花费的时间很少,而在实际分析数据并回答各种问题上的时间则越来越多。目前进入大数据应用相对较成熟的领域主要在公安、交通、电力、园区管理、网络安全、航天等。大数据价值被挖掘,帮助各行业从业务管理、事前预警、事中指挥调度、事后分析研判等多个方面提升智能化决策能力。公安领域的大数据应用,可以实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。交通领域的大数据应用,可以实现从公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益电力领域的大数据应用,可以实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。园区管理的大数据应用,可以实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控。
首先,对大量消费者提供产品或服务的企业可以利用大数据进行精准营销。其次,做小而美模式的中小微企业可以利用大数据做服务转型。再者,面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。定义对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。 随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
我国已进入大数据时代,在应用上大数据波及多个领域,目前进入大数据应用相对较成熟的范畴,主要在公安、交通、电力、园区管理、网络安全、航天等。大数据价值被挖掘,帮助各行业从业务管理、事前预警、事中指挥调度、事后分析研判等多个方面提升智能化决策能力。 在过去几年,大数据的建设主要集中在物联网、云计算、移动互联网等基础领域,一些大数据起步较早、积累较深的行业领域,开始基于大数据的基础建设,开启了行业数据应用与价值挖掘之路。从数据的抽取、清洗等预处理,到数据存储及管理,再到数据分析挖掘,以及最终的可视化呈现。行业用户开始把注意力转向大数据真正的价值点——发现规律,提升决策效率与能力。 网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。 大数据的作用在于挖掘数据价值。简单地说,大数据让数据产生各种“价值”,这个将数据价值化的过程就是大数据要做的主要事情。所以它主要体现在两个方面:第一个是: 帮助企业了解用户,第二个是:帮助企业了解自己。简单来介绍大数据的十大应用领域:1.了解和定位客户2.了解和优化业务流程3.提供个性化服务4.改善医疗保健和公共卫生5.提高体育运动技能6.提升科学研究7.提升机械设备性能8.强化安全和执法能力9.改善城市和国家建设10.金融交易安全性。可见大数据已经和我们的生活、工作和事业的发展紧密结合了,所以国家的高科技发展也急需大数据人才。

大数据都体现在哪些方面


文章TAG:大数据  数据  数据分析  分析  大数据分析  
下一篇