本文目录一览

1,GASEN全称是什么算法

一个基于遗传算法的选择性神经网络集成算法-a genetic algorithm based on the selective integration algorithm for neural networks
不明白啊 = =!

GASEN全称是什么算法

2,什么是Bagging算法

bagging 是bootstrap aggregating的缩写,它首次介绍是在L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123--140 ,是第一批用于多分类器集成算法。该集成方法包括在一个训练集合上重复训练得到的多个分类器。给定一个大小为N的训练集合,bagging方法构建了n个新的训练集合S1,S2...Sn,每个训练集合都是由随机抽取的N个样本进行训练。得到的

什么是Bagging算法

3,对面向过程的系统采用的集成策略有哪两种

先分析了面向对象开发方法的特点及其对软件测试的影响,讨论了 kung提出的集成测试策略的优缺点,并在此基础上提出了一种改进的集成测试策略,其改进之处主要在于不仅考虑了类之间的静态依赖关系,而且还考虑了程序 运行过程中可能存在的动态依赖关系,更加全面地考虑了类之间的依赖关系;并且设定新的规则对处于同一层的类再进行集成测试顺序的确定;最后通过实例分析得 出,改进后的集成测试算法在一定程度上减少集成测试过程中开发桩模块的
1.自顶向下集成 2.自底向上集成。

对面向过程的系统采用的集成策略有哪两种

4,什么是集成算法

应该是一种忽略物体内部的次要因素来进行计算的方法,是将一个三维问题简化的问题的方法。
国密算法是国家密码局制定标准的一系列算法。其中包括了对称加密算法,椭圆曲线非对称加密算法,杂凑算法。具体包括sm1,sm2,sm3等,其中:sm2为国家密码管理局公布的公钥算法,其加密强度为256位。其它几个重要的商用密码算法包括:sm1,对称加密算法,加密强度为128位,采用硬件实现;sm3,密码杂凑算法,杂凑值长度为32字节,和sm2算法同期公布,参见《国家密码管理局公告(第 22 号)》;sms4,对称加密算法,随wapi标准一起公布,可使用软件实现,加密强度为128位。

5,Bagging与Boosting最大的不同在哪里

【机器学习】boosting和bagging的差别boosting和bagging的差别:bagging中的模型是强模型,偏差低,方差高。目标是降低方差。在bagging中,每个模型的bias和variance近似相同,但是互相相关性不太高,因此一般不能降低bias,而一定程度上能降低variance。典型的bagging是random forest。boosting中每个模型是弱模型,偏差高,方差低。目标是通过平均降低偏差。boosting的基本思想就是用贪心法最小化损失函数,显然能降低偏差,但是通常模型的相关性很强,因此不能显著降低variance。典型的boosting是adaboost,另外一个常用的并行boosting算法是gbdt(gradient boosting decision tree)。这一类算法通常不容易出现过拟合。过拟合的模型,通常variance比较大,这时应该用bagging对其进行修正。欠拟合的模型,通常bias比较大,这时应该可以用boosting进行修正。使用boosting时, 每一个模型可以简单一些。金融常见的问题,是只用linear regression,这样一般来讲是欠拟合的,因此需要引入一些非线性的特征,欠拟合的模型可以先使用boosting尝试一下,如果效果不好,再使用其他的方法。过拟合的方法,通常使用bagging是会有一定的作用的。
两种不同的集成算法,Bagging采用重复取样:boostrap 每个个体分类器所采用的训练样本都是从训练集中按等概率抽取的,因此Bagging的各子网能够很好的覆盖训练样本空间,从而有着良好的稳定性。 而Boosting注重分类错误的样本,将个体子网分类错误的训练样本的权重提高,降低分类错误的样本权重,并依据修改后的样本权重来生成新的训练样本空间并用来训练下一个个体分类器。然而,由于Boosting算法可能会将噪声样本或分类边界样本的权重过分累积,因此Boosting很不稳定,但其在通常情况下,其泛化能力是最理想的集成算法之一。 你得自己去查文献,别来这问,这没人做学术的,我也是偶尔看到你的提问。

6,用于数据挖掘的分类算法有哪些各有何优劣

1. 朴素贝叶斯(Naive Bayes, NB)超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型(如Logistic回归)收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。如果你想做类似半监督学习,或者是既要模型简单又要性能好,NB值得尝试。2. Logistic回归(Logistic Regression, LR)LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机(SVM)不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型(使用在线梯度下降法)。如果你想要一些概率信息(如,为了更容易的调整分类阈值,得到分类的不确定性,得到置信区间),或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。3.决策树(Decision Tree, DT)DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题(例如,DT可以轻松的处理这种情况:属于A类的样本的特征x取值往往非常小或者非常大,而属于B类的样本的特征x取值在中间范围)。DT的主要缺点是容易过拟合,这也正是随机森林(Random Forest, RF)(或者Boosted树)等集成学习算法被提出来的原因。此外,RF在很多分类问题中经常表现得最好(我个人相信一般比SVM稍好),且速度快可扩展,也不像SVM那样需要调整大量的参数,所以最近RF是一个非常流行的算法。4.支持向量机(Support Vector Machine, SVM)很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。由于较大的内存需求和繁琐的调参,我认为RF已经开始威胁其地位了。
常见的机器学习分类算法就有,不常见的更是数不胜数,那么我们针对某个分类问题怎么来选择比较好的分类算法呢?下面介绍一些算法的优缺点:1. 朴素贝叶斯比较简单的算法,所需估计的参数很少,对缺失数据不太敏感。如果条件独立性假设成立,即各特征之间相互独立,朴素贝叶斯分类器将会比判别模型,如逻辑回归收敛得更快,因此只需要较少的训练数据。就算该假设不成立,朴素贝叶斯分类器在实践中仍然有着不俗的表现。如果你需要的是快速简单并且表现出色,这将是个不错的选择。其主要缺点现实生活中特征之间相互独立的条件比较难以实现。2. 逻辑回归模型训练时,正则化方法较多,而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树与支持向量机相比,逻辑回归模型还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法)。如果你需要一个概率架构(比如简单地调节分类阈值,指明不确定性,获得置信区间),或者你以后想将更多的训练数据快速整合到模型中去,逻辑回归是一个不错的选择。3. 决策树决策树的分类过程易于解释说明。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分。它的一个缺点就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点是容易过拟合,但这也就是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是多分类问题的赢家(通常比支持向量机好上那么一点),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以随机森林相当受欢迎。4. 支持向量机高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。但是,好的数据却要优于好的算法,设计优良特征比优良的算法好很多。假如你有一个超大数据集,那么无论你使用哪种算法可能对分类性能都没太大影响(此时就根据速度和易用性来进行抉择)。如果你真心在乎准确率,你一定得尝试多种多样的分类器,并且通过交叉验证选择最优。

文章TAG:集成  算法  gasen  全称  集成算法  
下一篇