本文目录一览

1,uct算法和蒙特卡洛算法的区别

他们有类似之处,但差别也不校 蒙特卡洛算法是数值计算方法,原理是利用随机数来解决计算问题。与它对应的是确定性算法。也就是说该种算法属于随机算法,得到的解是近似解。 而遗传算法、粒子群、模拟退火虽然也是随机近似算法,但这三种都是仿...
你说呢...

uct算法和蒙特卡洛算法的区别

2,蒙特卡洛算法是什么

蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。使用蒙特·卡罗方法步骤:1.使用随机数发生器产生一个随机的分子构型。2.对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。3.计算新的分子构型的能量。4.比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。

蒙特卡洛算法是什么

3,蒙特卡洛算法的实际应用举例

比较简单的有随机抽样,通过坐标的变换产生球面,圆面,正方体面等等所需要的抽样。在某些计算机模拟过程中,可以随机产生噪声,比如说水中花粉随机行走之类的问题,可以用来随机产生外界水分子的作用力,用来模拟现实情况。当然也可以用这种方式来近似某些科学计算,最简单的例子就是近似计算积分。对于某些计算机无法完全枚举的优化问题,也可以用蒙特卡洛方法得到较好的解,常见的比如模拟退火,量子退火等优化方法,都用到了蒙特卡洛算法。
他们有类似之处,但差别也不校 蒙特卡洛算法是数值计算方法,原理是利用随机数来解决计算问题。与它对应的是确定性算法。也就是说该种算法属于随机算法,得到的解是近似解。 而遗传算法、粒子群、模拟退火虽然也是随机近似算法,但这三种都是仿...

蒙特卡洛算法的实际应用举例

4,蒙特卡洛算法是什么

蒙特卡洛算法一般指蒙特·卡罗方法,也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。蒙特卡罗算法并不是一种算法的名称,而是对一类随机算法的特性的概括。举个例子,假如筐里有100个苹果,让我每次闭眼拿1个,挑出最大的。于是我随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个……我每拿一次,留下的苹果都至少不比上次的小。拿的次数越多,挑出的苹果就越大,但我除非拿100次,否则无法肯定挑出了最大的。这个挑苹果的算法,就属于蒙特卡罗算法——尽量找好的,但不保证是最好的。蒙特卡罗是一类随机方法的统称。这类方法的特点是,可以在随机采样上计算得到近似结果,随着采样的增多,得到的结果是正确结果的概率逐渐加大,但在(放弃随机采样,而采用类似全采样这样的确定性方法)获得真正的结果之前,无法知道目前得到的结果是不是真正的结果。

5,如何简单理解马尔科夫链蒙特卡洛方法

假设ABC的市占率分别为20%、20%和40% A报每年会流失30%到B,流失30%到C B报每年会流失20%到A,流失30%到C C报每年会流失40%到A,流失40%到B 那麼,一开始可以获得起始的市占率矩阵A0 A→ 0.2 B→ [ 0.2 ] C→ 0.4 并也可以写出流动的马克夫矩阵P A B C A→ 0.4 0.3 0.3 B→ [ 0.2 0.5 0.3 ] C→ 0.4 0.4 0.2 (第一列的数字分别为"A报继续订阅"、"A报转定B报"、"A报转定C报",以下类推) 而马克夫矩阵本身有一些特点,需要特别注意: 1. 每行的和为1(单一机率的总和本来就是1) 2.每列的和也为1(指事件变化的机率总和) 有了这些资料我们可以开始推估一年后的市占率A1 0.4 0.3 0.3 0.2 0.26 A1=P X A0=[ 0.2 0.5 0.3 ][0.2]=[0.26] 0.4 0.4 0.2 0.4 0.24 於是我们知道一年后的市占率为26%、26%、24%

6,蒙特卡洛方法

蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。算法原理:蒙特卡洛方法利用从某个总体中抽取的随机数作为样本进行实验,以求得的统计特征值(均值、概率、分布等)作为待解问题的数值解,然后利用蒙特卡洛方法根据测量信号的测量误差计算每个测量值的计算权重,综合考虑数据质量权重和测量误差权重后,通过对所有信号进行加权平均值计算得出最终的真实信号值。起源:蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的"曼哈顿计划"计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。. 数学家冯·诺伊曼用驰名世界的赌城-摩纳哥的Monte Carlo来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。工作过程:1、用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。2、用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。应用领域:蒙特卡罗方法在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算、核工程)等领域应用广泛。

7,matlab中蒙特卡洛算法代码求解释

随机在正方形区域生成10000个点,find函数的作用:统计出在给定曲线y=2-x^2和曲线y^3=x^2之间的点数。 这样求S的目的是计算比值,比值即为所求。
find函数是Matlab的一个系统函数,是找到数组中的非零元的索引坐标,在这里主要是找出满足落在绿色积分区域的点的个数,S是面积,其中4是总的面积,M/10000表示一个概率的含义,就是落在绿色区域的可能性。在这里是0.54,表示整个绿色区域占矩形区域的面积的54%。特别需要注意的M/10000不是面积,而是百分比,是0-1之间的一个数。
find就是找满足落在扇形区域的点的编号S就是面积
"rand(m,n)产生m*n均匀随机数。ex:用概率方法求pin=100000;x=rand(n,1);y=rand(n,1);count=0;for i=1:nif (x(i)^2+y(i)^2<=1)count=count+1;endendpi=4*count/n"

8,什么是蒙特卡洛分析

??蒙特·卡罗方法(MonteCarlomethod),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的MonteCarlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国数学家布丰(GeorgesLouisLecleredeBuffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡罗方法的起源。蒙特卡罗方法解题过程的三个主要步骤:(1)构造或描述概率过程。对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。(2)实现从已知概率分布抽样。构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。(3)建立各种估计量。一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 ??

9,蒙特卡洛模拟法的应用范围是什么

蒙特卡洛模拟法的应用领域主要有:1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 蒙特卡洛(Monte Carlo)模拟这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
var(value at risk)按字面解释就是“在险价值”,其含义指:在市场正常波动下,某一金融资产或证券组合的最大可能损失。更为确切的是指,在一定概率水平(置信度)下,某一金融资产或证券组合价值在未来特定时期内的最大可能损失。用公式表示为:   prob(△ρ

10,蒙特卡洛 模拟法 计算var 的公式是什么

更为确切的是指,在一定概率水平(置信度)下,某一金融资产或证券组合价值在未来特定时期内的最大可能损失。用公式表示为:Prob(△Ρ△Ρ表示:某一金融资产在一定持有期△t的价值损失额。 VAR表示:给定置信水平α下的在险价值,即可能的损失上限。 α为:给定的置信水平。 VAR从统计的意义上讲,本身是个数字,是指面临“正常”的市场波动时“处于风险状态的价值”。即在给定的置信水平和一定的持有期限内,预期的最大损失量(可以是绝对值,也可以是相对值)。例如,某一投资公司持有的证券组合在未来24小时内,置信度为95%,在证券市场正常波动的情况下,VaR 值为800万元。其含义是指,该公司的证券组合在一天内(24小时),由于市场价格变化而带来的最大损失超过800万元的概率为5%,平均20个交易日才可能出现一次这种情况。或者说有95%的把握判断该投资公司在下一个交易日内的损失在800万元以内。5%的机率反映了金融资产管理者的风险厌恶程度,可根据不同的投资者对风险的偏好程度和承受能力来确定。 VAR的计算系数 由上述定义出发,要确定一个金融机构或资产组合的VAR值或建立VAR的模型,必须首先确定以下三个系数:一是持有期间的长短;二是置信区间的大小;三是观察期间。 1、持有期。持有期△t,即确定计算在哪一段时间内的持有资产的最大损失值,也就是明确风险管理者关心资产在一天内一周内还是一个月内的风险价值。持有期的选择应依据所持有资产的特点来确定比如对于一些流动性很强的交易头寸往往需以每日为周期计算风险收益和VaR值,如G30小组在1993年的衍生产品的实践和规则中就建议对场外OTC衍生工具以每日为周期计算其VaR,而对一些期限较长的头寸如养老基金和其他投资基金则可以以每月为周期。 从银行总体的风险管理看持有期长短的选择取决于资产组合调整的频度及进行相应头寸清算的可能速率。巴塞尔委员会在这方面采取了比较保守和稳健的姿态,要求银行以两周即10个营业日为持有期限。 2、置信水平α。一般来说对置信区间的选择在一定程度上反映了金融机构对风险的不同偏好。选择较大的置信水平意味着其对风险比较厌恶,希望能得到把握性较大的预测结果,希望模型对于极端事件的预测准确性较高。根据各自的风险偏好不同,选择的置信区间也各不相同。比如J.P. Morgan与美洲银行选择95%,花旗银行选择95.4%,大通曼哈顿选择97.5%,Bankers Trust选择99%。作为金融监管部门的巴塞尔委员会则要求采用99%的置信区间,这与其稳健的风格是一致的。 3、第三个系数是观察期间(Observation Period)。观察期间是对给定持有期限的回报的波动性和关联性考察的整体时间长度,是整个数据选取的时间范围,有时又称数据窗口(Data Window)。例如选择对某资产组合在未来6个月,或是1年的观察期间内,考察其每周回报率的波动性(风险) 。这种选择要在历史数据的可能性和市场发生结构性变化的危险之间进行权衡。为克服商业循环等周期性变化的影响,历史数据越长越好,但是时间越长,收购兼并等市场结构性变化的可能性越大,历史数据因而越难以反映现实和未来的情况。巴塞尔银行监管委员会目前要求的观察期间为1年。 综上所述,VaR实质是在一定置信水平下经过某段持有期资产价值损失的单边临界值,在实际应用时它体现为作为临界点的金额数目。
期待看到有用的回答!

文章TAG:蒙特卡洛  卡洛  算法  区别  蒙特卡洛算法  
下一篇