1,人工智能包括哪些方面

“人工智能领域的研究包括机器人、图像识别、语言识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人,必须懂得计算机知识、心理学和哲学。”

{0}

2,人工智能ai有哪些细思极恐的事实 知乎

人在这个社会也都是需要进步和学习的,默守成规就只能被淘汰,与其担心被人工智能淘汰,不如去多学学其他的一些知识,充实自己,因为不管人工智能再怎么普及,毕竟那不还是人工智能的嘛,还是需要有人的,你得让自己去适应这个人工智能,去做这个人工智能的操纵者,而不是担心自己被取代。
搜一下:人工智能ai有哪些细思极恐的事实 知乎
人在这个社会也都是需要进步和学习的,默守成规就只能被淘汰,与其担心被人工智能淘汰,不如去多学学其他的一些知识,充实自己,因为不管人工智能再怎么普及

{1}

3,人工智能的前景怎么样

当前,我国人工智能产业发展的基础条件已经具备,未来十年内都将是人工智能技术加速普及的爆发期。人工智能专用芯片有望成为下一个爆发点,智能语音产业链逐渐成形,产业规模大幅提升。同时,人工智能具有显著的溢出效应,将带动其他相关技术的持续进步,助推传统产业转型升级和战略性新兴产业整体性突破。
作者:北冥乘海生链接:https://www.zhihu.com/question/20102212/answer/280188150来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。以史为鉴,可以知兴衰。为了探讨人工智能的发展前景,我们简单回顾一下人工智能前面发展的三起两落。一、六十多年前的达特茅斯会议,提出了“Artifitial Intelligence”的课题,目的是让逐渐成熟的计算机能够代替人类解决一些感知、认知乃至决策的问题。这样一个课题是如此令人神往,也迅速吸引了大量学者的眼球,相关的研究也如火如荼地开展了起来。是为第一起。二、初,学者们解决人工智能问题的思路,是以人为师,通过专家编制规则的方法,教机器下棋、认字乃至语音识别。在今天看来,这样的方法是完全南辕北辙的——人类的视听器官虽然很发达,却并没有能力总结提炼其中的规律。于是,人工智能的美好憧憬中迎来了残酷的现实,学者们发现解决问题是如此遥远,围观群众也一度认为人工智能的学者都是骗子。是为第一落。三、既然靠人指导不行,那就要祭出“实事求是”的法宝,从数据里统计规律。在这样数据+统计的方法论下,诸如人脸识别、手写识别等一些较为简单的问题取得了重大进展,而在当时最困难的问题——大词表连续语音识别上,统计方法也是史无前例地造就了实验室中“基本可用”的系统。到此时,我们感觉找到了解决人工智能问题的基本思路。是为第二起。四、数据+统计模型的方法盛行以后,也很快遇到了瓶颈:数据量的提升并不总能带来识别率的提高。当然,我们很早就知道“深度模型”比“浅层模型”学习数据的能力强,无奈这种模型的计算代价极高,只能望洋兴叹。拿语音识别为例,在“基本可用”到“实用”之间的鸿沟,十几年都没有跨过去,于是大家又转向悲观,觉得人工智能还只是个梦。是为第二落。五、第二落以来,继续坚持在“深度神经网络”这条战线上的学者很少,因为做这个是拿不到funding的。其中有一位老前辈Jeffrey Hinton,和他的学生Alex一起,发现用GPU算神经网络,能大幅提高速度,于是这种模型居然可能实用了。一旦实用,深度模型可以疯狂吸收数据的优势就发挥出来了,于是在语音识别、图像识别等领域带来了飞跃式的进展。是为第三起。当然,工业界的看到的这第三起,比我们上面轻描淡写提到的内容要波澜壮阔得多。不过,不要太在意,因为各路大佬不论过去是做黑产、卖假货还搞劫持的,都摇身一变成了人工智能的忠实拥趸和业界先驱——虽然他们的数学也就是初中肄业水平。去年,当我听到某此类上市公司老板歇斯底里地在财报中喊出要投入数千万美元搞人工智能时,不由心生感慨:修脚的可以挂妙手回春的锦旗,但千万别说自己是做精准医疗的!虽然人工智能的第三起确实有了质的发展,但考虑到这些沉渣泛起的为人工智能从业者,我觉得第三落还是会来到,只不过并非对行业本身的怀疑,而是自我净化罢了。而人工智能的行业发展趋势,由于大规模数据+大规模算力的基本方法论已经成熟,今后的发展路径是十分清楚的:在那些数据储备充分、商业价值清晰的场景,人工智能会迅猛发展,投身于这样的行业中期发展会非常好;而医疗、教育这类领域,由于电子化数据的整理与积累尚需时日,可以需要一个较为漫长的发展过程。
肯定是前途无量
再不好也比女人好在女人身上投资是最失败的选择就是死翘翘也别让自己比女人厉害除非脑子有问题明码标价的一切利益应该在男人身上

{2}


文章TAG:人工  人工智能  智能  知乎  人工智能知乎  
下一篇