本文目录一览

1,四大干涉仪都有啥迈克尔逊菲索FP

双光束干涉仪:迈克尔逊(Michelson)干涉仪,马赫-曾德(Mach-Zehnde)干涉仪,塞纳克(Sagnac)干涉仪,斐索干涉仪。法布里-珀罗(Fabry-Perot)干涉仪属于多光束干涉仪。

四大干涉仪都有啥迈克尔逊菲索FP

2,干涉仪的应用

干涉仪的应用极为广泛,主要有如下几方面: 用作高分辨率光谱仪。法布里-珀罗干涉仪等多光束干涉仪具有很尖锐的干涉极大,因而有极高的光谱分辨率,常用作光谱的精细结构和超精细结构分析。历史上的作用。19世纪的波动论者认为光波或电磁波必须在弹性介质中才得以传播,这种假想的弹性介质称为以太。人们做了一系列实验来验证以太的存在并探求其属性。以干涉原理为基础的实验最为精确,其中最有名的是菲佐实验和迈克耳孙-莫雷实验。1851年,A.H.L.菲佐用特别设计的干涉仪做了关于运动介质中的光速的实验,以验明运动介质是否曳引以太。1887年,A.A.迈克耳孙和E.W.莫雷合作利用迈克耳孙干涉仪试图检测地球相对绝对静止的以太的运动。对以太的研究为A.爱因斯坦的狭义相对论提供了佐证。

干涉仪的应用

3,Sagnac干涉仪的原理

萨格纳克效应概述 英文名称: Sagnac Effect 1911年萨格纳克发明了一种可以旋转的环形干涉仪。将同一光源发出的一束光分解为两束,让它们在同一个环路内沿相反方向循行一周后会合,然后在屏幕上产生干涉。这就是萨格纳克效应。 萨格纳克效应中条纹移动数与干涉仪的角速度和环路所围面积之积成正比。 萨格纳克效应已经得到广泛的应用,由萨格纳克效应研制出的光纤陀螺已成功地用于航空、航天等领域,是近20年发展较快的一种陀螺仪。 定义1: 这一在惯性空间中,由光敏感转动的效应称为SAGNAC效应.光纤陀螺工作原理框图如图1所示.由光源发出的光,经藕合器传输到Y一波导调制器.Y一波导调制器将其输入光分成顺时针和逆时针传输的两束,进人保偏光纤环圈,以实现SAGNAC效应 定义2: 这种现象称为Sagnac效应,光纤陀螺仪实质上就是一种Sagnac干涉仪.对于光纤陀螺仪的性能测试主要涉及以下几个技术参数:标度因数K(scalefactor)陀螺仪输出量与输入角速率的比值

Sagnac干涉仪的原理

4,光学干涉仪

利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,干涉条纹每移动一个条纹间距,光程差就改变一个波长(~10-7米),所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的。 根据光的干涉原理制成的一种仪器。将来自一个光源的两个光束完全分并,各自经过不同的光程,然后再经过合并,可显出干涉条纹。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 干涉仪分双光束干涉仪和多光束干涉仪两大类,前者有瑞利干涉仪 、迈克耳孙干涉仪及其变型泰曼干涉仪、马赫-秦特干涉仪等,后者有法布里-珀罗干涉仪等。 干涉仪的应用极为广泛,主要有如下几方面: ①长度的精密测量。在双光束干涉仪中,若介质折射率均匀且保持恒定,则干涉条纹的移动是由两相干光几何路程之差发生变化所造成,根据条纹的移动数可进行长度的精确比较或绝对测量。迈克耳孙干涉仪和法布里-珀罗干涉仪曾被用来以镉红谱线的波长表示国际米。 ②折射率的测定。两光束的几何路程保持不变,介质折射率变化也可导致光程差的改变,从而引起条纹移动。瑞利干涉仪就是通过条纹移动来对折射率进行相对测量的典型干涉仪。应用于风洞的马赫-秦特干涉仪被用来对气流折射率的变化进行实时观察。 ③波长的测量。任何一个以波长为单位测量标准米尺的方法也就是以标准米尺为单位来测量波长的方法。以国际米为标准,利用干涉仪可精确测定光波波长。法布里-珀罗干涉仪(标准具)曾被用来确定波长的初级标准(镉红谱线波长)和几个次级波长标准,从而通过比较法确定其他光谱线的波长。 ④检验光学元件的质量。泰曼干涉仪被普遍用来检验平板、棱镜和透镜等光学元件的质量。在泰曼干涉仪的一个光路中放置待检查的平板或棱镜,平板或棱镜的折射率或几何尺寸的任何不均匀性必将反映到干涉图样上。若在光路中放置透镜,可根据干涉图样了解由透镜造成的波面畸变,从而评估透镜的波像差。 ⑤用作高分辨率光谱仪。法布里-珀罗干涉仪等多光束干涉仪具有很尖锐的干涉极大,因而有极高的光谱分辨率,常用作光谱的精细结构和超精细结构分析。 ⑥历史上的作用。19世纪的波动论者认为光波或电磁波必须在弹性介质中才得以传播,这种假想的弹性介质称为以太。人们做了一系列实验来验证以太的存在并探求其属性。以干涉原理为基础的实验最为精确,其中最有名的是菲佐实验和迈克耳孙-莫雷实验。1851年,A.H.L.菲佐用特别设计的干涉仪做了关于运动介质中的光速的实验,以验明运动介质是否曳引以太。1887年,A.A.迈克耳孙和E.W.莫雷合作利用迈克耳孙干涉仪试图检测地球相对绝对静止的以太的运动。对以太的研究为A.爱因斯坦的狭义相对论提供了佐证。

5,什么叫干涉仪干涉仪的原理和构造

http://202.192.168.54/dxwlsy/CLASSDA/JIAOAN/zonghe/maikeerxun.doc
干涉仪interferometer 利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,干涉条纹每移动一个条纹间距,光程差就改变一个波长(~10-7米),所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的。 干涉仪分双光束干涉仪和多光束干涉仪两大类,前者有瑞利干涉仪 、迈克耳孙干涉仪及其变型泰曼干涉仪、马赫-秦特干涉仪等,后者有法布里-珀罗干涉仪等。干涉仪的应用极为广泛,主要有如下几方面: ①长度的精密测量。在双光束干涉仪中,若介质折射率均匀且保持恒定,则干涉条纹的移动是由两相干光几何路程之差发生变化所造成,根据条纹的移动数可进行长度的精确比较或绝对测量。迈克耳孙干涉仪和法布里-珀罗干涉仪曾被用来以镉红谱线的波长表示国际米。 ②折射率的测定。两光束的几何路程保持不变,介质折射率变化也可导致光程差的改变,从而引起条纹移动。瑞利干涉仪就是通过条纹移动来对折射率进行相对测量的典型干涉仪。应用于风洞的马赫-秦特干涉仪被用来对气流折射率的变化进行实时观察。 ③波长的测量。任何一个以波长为单位测量标准米尺的方法也就是以标准米尺为单位来测量波长的方法。以国际米为标准,利用干涉仪可精确测定光波波长。法布里-珀罗干涉仪(标准具)曾被用来确定波长的初级标准(镉红谱线波长)和几个次级波长标准,从而通过比较法确定其他光谱线的波长。 ④检验光学元件的质量。泰曼干涉仪被普遍用来检验平板、棱镜和透镜等光学元件的质量。在泰曼干涉仪的一个光路中放置待检查的平板或棱镜,平板或棱镜的折射率或几何尺寸的任何不均匀性必将反映到干涉图样上。若在光路中放置透镜,可根据干涉图样了解由透镜造成的波面畸变,从而评估透镜的波像差。 ⑤用作高分辨率光谱仪。法布里-珀罗干涉仪等多光束干涉仪具有很尖锐的干涉极大,因而有极高的光谱分辨率,常用作光谱的精细结构和超精细结构分析。 ⑥历史上的作用。19世纪的波动论者认为光波或电磁波必须在弹性介质中才得以传播,这种假想的弹性介质称为以太。人们做了一系列实验来验证以太的存在并探求其属性。以干涉原理为基础的实验最为精确,其中最有名的是菲佐实验和迈克耳孙-莫雷实验。1851年,a.h.l.菲佐用特别设计的干涉仪做了关于运动介质中的光速的实验,以验明运动介质是否曳引以太。1887年,a.a.迈克耳孙和e.w.莫雷合作利用迈克耳孙干涉仪试图检测地球相对绝对静止的以太的运动。对以太的研究为a.爱因斯坦的狭义相对论提供了佐证。
两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,光程差就改变一个波长(~10-7米),干涉条纹每移动一个条纹间距,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量利用干涉原理测量光程之差从而测定有关物理量的光学仪器,所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的

6,光纤干涉仪的原理是什么

(1)干涉仪及干涉条纹的解析 评价光纤连接器端面的球面半径和光纤高度,首先必须测量连接器端面的形状。干涉仪具有测量精度高,速度快,成本低等优点,是测量表面形状的一个有效手段。图3.是光纤连接器端面检测干涉仪的系统概要。由光源射出的光线经半透镜反射到米罗干涉物镜后,光线聚焦于被检测光纤连接器的端面,经端面反射后与米罗干涉物镜的反射面反射的光线一同透过半透镜,成像于CCD摄像头。这时在CCD摄像头上可以观察到干涉条纹。CCD摄像头测得的图像经图像卡传送到计算机进行解析处理。就可以得到我们所需要的测量结果。由计算机经过控制卡及控制回路控制的PZT(压电陶瓷组件)用于移动米罗干涉物镜以产生位相移动。 解析干涉条纹可以应用傅立叶变换法2,3,4,也可以应用位相移动法5,6。傅立叶变换法具有简单,快速,低成本等优点,但精度较低,一般用于简易型测量仪。对于光纤连接器端面形状的测量,一般采用解析精度较高的位相移动法。 必须指出的是位相连接是一个比较复杂的过程。选择不同的位相连接算法,计算速度和安定性将会不同。 (2)载物台的倾斜调整 载物台的倾斜调整是一项关键技术。如果载物台的倾斜调整精度不高,将极大地影响球面顶点偏心,APC角度及定位键角度的测量精度。图4为倾斜调整和球面顶点偏心测量精度的关系概要。如图4(a)所示,当载物台倾斜调整完整时,干涉仪光学系统的光轴将与被测定光纤连接器的插芯的中心轴平行。此时,旋转被测定光纤连接器时,光纤连接器端面的球面顶点(环形干涉条纹的中心如A点或B点)将绕光纤的中心O点旋转,构成一个以O点为中心的圆。测定的顶点偏芯值OA或OB将与实际的顶点偏芯相同。也就是说,无论旋转光纤连接器到什幺角度,测定的顶点偏芯值的变化将不会太大。相反,如图4(b)所示,当载物台倾斜调整不完整时,干涉仪光学系统的光轴将会与被测定光纤连接器的插芯的中心轴交叉成一个角度。此时,旋转被测定光纤连接器时,光纤连接器端面的球面顶点(环形干涉条纹的中心如A点,B点,C点或D点)会绕一个与光纤的中心O不相同的中心O*旋转,构成一个以O*为中心的圆。显然,在不同位置测量的顶点偏芯值OA,OB或OC将与实际的顶点偏芯OD不相同。也就是说,旋转光纤连接器后,测定的顶点偏芯值将会有很大的变化。从这个现象也可以得到一个检验载物台倾斜调整是否完整的方法。即,旋转光纤连接器,依次测定顶点偏芯值,如果测定的顶点偏芯值变化不大,则载物台倾斜调整是完整的。反之,则载物台倾斜调整是不完整的。为了提高载物台倾斜的调整精度,富士写真光机株式会社开发了一种高精度,操作简单的载物台倾斜调整技术(已申请多国专利)7,8,可以达到大大高于一般调整方法的调整精度。 (3)测量再现性 测量再现性对光纤连接器端面检测仪的测量精度有很大的影响。以顶点偏心为例,目前,绝大部分厂商生产的光纤连接器端面检测仪的测量再现性精度大约在±5μm附近。这些数据可以从各厂家的网页方便的查到。有的厂家以测量再现性的标准偏差σ来衡量。按照误差理论的计算方法,此时的测量再现性最大误差可达±3σ,大约也在±6μm附近。 一般不可能要求测量仪器的测量精度高于测量再现性精度。所以再现性精度是判定测量仪器的测量精度最重要指标之一。 光纤连接器端面检测仪的测量再现性精度主要由光纤连接器端面检测干涉仪的测量再现性精度(由PZT的位相移动精度,CCD摄像头的精度和图像卡的A/D转换器的精度,测量电路的噪声,测量环境,如振动,温度的变化决定),以及载物台光纤连接器固定夹具的定位精度来决定。此外,一般由于光纤连接器插入固定夹具的旋转方向角度的不确定性(除APC光纤连接器),载物台的倾斜调整精度也会影响测量再现性精度。 对于干涉仪的测量再现性,可以固定光纤连接器于载物台的固定夹具上,在不拔出光纤连接器的状态下反复进行测量。然后,对测量的数值进行处理,从而评价干涉仪本身的测量再现性。一般来说,基于现代干涉仪测量技术和干涉条纹解析技术而开发的干涉仪具有很高的测量再现性。不过,由于光学设计及光路布置不当,有些厂家的干涉仪对振动很敏感,从而影响干涉仪的测量再现性精度。 对于光纤连接器固定夹具的定位精度,可以多次插入/拔出被测光纤连接器,对同一光纤连接器反复进行测量。然后,对测量的数值进行处理,从而评价光纤连接器固定夹具的定位精度。必须指出的是,由于大多采用某种标准器,如标准光纤连接器来进行载物台的倾斜调整,载物台的倾斜调整精度也会受到固定夹具的定位精度的影响,因此,提高固定夹具的定位精度是提高整个光纤连接器端面检测仪的测量精度的关键。为了提高固定夹具的定位精度,富士写真光机株式会社开发了一种高精度,操作简单,可靠性高的光 http://cache.baidu.com/c?word=%B9%E2%CF%CB%3B%B8%C9%C9%E6%3B%D2%C7%2C%D4%AD%C0%ED&url=http%3A//www%2E0net%2Ecn/element/10445%2Ehtml&p=cb6ff915d9c544ee0fb3c7710e1383&user=baidu

文章TAG:干涉仪  四大干涉仪都有啥迈克尔逊菲索FP  
下一篇