本文目录一览

1,LMS算法的介绍

LMS算法是指 Least mean square 算法的意思。

LMS算法的介绍

2,LMS算法的流程是什么LMS算法的原理均衡算法的发展趋势是什么

LMS算法是首先通过期望信号与实际信号的误差,再通过最陡下降法,进行与误差成一定步长的迭代运算,从而使结果更趋近于最佳值。LMS算法的原理即使将E(e^2)视为e^2,简化了运算。

LMS算法的流程是什么LMS算法的原理均衡算法的发展趋势是什么

3,lms算法在自适应滤波器中解决了什么问题

自适应算法所采用的最优准则有最小均方误差(LMS)准则,最小二乘(LS)准则、最大信噪比准则和统计检测准则等,其中最小均方误差(LMS)准则和最小二乘(LS)准则是目前最为流行的自适应算法准则。x(n)代表n时刻的输入信号,y(n)代表n时刻的输出信号,d(n)代表n时刻的期望信号,通过期望信号与输出信号之差e(n)来自动调节自适应滤波器的参数,使下一时刻的输出y(n+1)能够更加接近期望信号。

lms算法在自适应滤波器中解决了什么问题

4,什么是LMS算法

LMS算法步骤:1,、设置变量和参量:X(n)为输入向量,或称为训练样本W(n)为权值向量e(n)为偏差d(n)为期望输出y(n)为实际输出η为学习速率n为迭代次数2、初始化,赋给w(0)各一个较小的随机非零值,令n=03、对于一组输入样本x(n)和对应的期望输出d,计算e(n)=d(n)-X(n)W(n+1)=W(n)+ηX(n)e(n)4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行。

5,LMS算法的简介

全称 Least mean square 算法。中文是最小均方算法。感知器和自适应线性元件在历史上几乎是同时提出的,并且两者在对权值的调整的算法非常相似。它们都是基于纠错学习规则的学习算法。感知器算法存在如下问题:不能推广到一般的前向网络中;函数不是线性可分时,得不出任何结果。而由美国斯坦福大学的Widrow和Hoff在研究自适应理论时提出的LMS算法,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。

6,什么是LMS算法全称是什么

1959年,Widrow和Hof提出的最小均方(LMS )算法对自适应技术的发展起了极 大的作用。由于LMS算法简单和易于实现,它至今仍被广泛应用。对LMS算法的性能 和改进算法已经做了相当多的研究,并且至今仍是一个重要的研究课题。进一步的研究 工作涉及这种算法在非平稳、相关输入时的性能研究。当输入相关矩阵的特征值分散时, LMS算法的收敛性变差,研究的另一个方面在于如何解决步长大小与失调量之间的矛 盾。 全称 Least mean square

文章TAG:LMS算法  LMS算法的介绍  
下一篇