本文目录一览

1,在振动信号分析中阶次谱和频谱之间有何联系如何定义阶次如何

阶比分析技术是旋转机械振动信号分析和故障诊断的重要技术之一,特别是在旋转机械的启停振动分析中比传统的频谱分析有着明显的优势。事实上,阶比分析是对角域采样信号的频谱分析,其关键是实现振动信号的等角度采样,即每隔一定的角度进行采样,无论转速是多少,每一转的采样点数总是相同的。要保证等角度采样必需根据参考轴的转速变化相应的调节采样频率,这个过程就是阶比跟踪。目前实现阶比分析的主要方法有传统硬件阶比分析法、计算阶比分析法(COT法)和基于瞬时频率估计的阶比分析法。

在振动信号分析中阶次谱和频谱之间有何联系如何定义阶次如何

2,怎么把信号分离

如果是科学的话,可以采用小波分析。小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。

怎么把信号分离

3,什么是频谱分析

频谱分析 将信号源发出的信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律,称为频谱分析。目的 研究噪声的频谱是为了深入了解噪声源的特性帮助寻找主要的噪声污染源,为噪声控制提供依据。应用软件及其方法 对信号进行频谱分析,往往对其进行傅里叶变换,观察其频谱幅度与频谱相位。分析软件主要为Matlab。 对于信号来说,分模拟信号与数字信号。对于模拟信号来说,往往对其进行抽样,然后进行快速傅里叶变换(fft),然后对其幅度(abs)和相位(angle)的图像进行分析。对于数字信号,则可直接进行快速傅里叶变换。
将信号源发出的信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律,就称为频谱分析。 研究噪声的频谱是为了深入了解噪声源的特性帮助寻找主要的噪声污染源,为噪声控制提供依据,为噪声控制提供依据。

什么是频谱分析

4,以时频信号为例分析常规傅立叶变换短时傅立叶变换在暂态过程

传统的傅里叶分析在分析和处理平稳信号中具有重要作用。它将时间域内的复杂信号的分析转换为频率域内的具有简单参数的频谱密度的分析,或者分解为具有简单形状的信号如正弦信号之和。这种从一个分析域转换到另一个分析域的方法是信号分析中的常用方法。从其中任何一个域都可以完整的描述信号的全部特征,可称为时频率可分性。从傅里叶变换的表达式看出,傅里叶变换描绘的是整个时间段内的频率特性,或者说它是一种全局的变换,没有刻画出特定时间或特定频率段内的信号特性。从实时的角度看,对于实时性要求比较高的场合,如语音信号识别等,要求处理结果具有很小的延时。但传统的傅里叶变换是针对负无穷到正无穷所有的信号,换句话说,就是需要将所有信号采集完成后才能给出结果,这是实时处理锁不能容忍的,这也体现了傅里叶变换的局限性。针对傅里叶变换的局限性,一种有效的方法就是时域—频域联合分析法。信号从一维时域分解为时域和频域的二维联合表示,用以描述信号在不同时间段内的频率分布情况。常用的时频分析手段有短时傅里叶变换。短时傅里叶变换将信号在时域内进行分段,等效于用位置不同的窗函数与原信号想乘,先选定一个基本窗函数,然后将窗函数沿时间轴平移得到一组窗函数。平移后的窗函数与原信号相乘,其结果就是得到原信号在不同时间段内的时域信息。将每一段内的信号视为平稳的,对其进行傅里叶变换,从而得到信号的频谱,或者计算幅频特性的平方作为该段信号的功率谱。短时傅里叶变换是一种时频联合分析法,当窗函数一旦选定之后,窗函数的时间窗和频率窗就固定了,不会随着时域和频域的位移而变化。但是在实际应用中,我们往往希望在低频部分的频窗比较窄,而在高频部分频窗比较宽。为了适应这种需要,我们希望有一种能够自适应变化的时频窗,从而引出了小波变换。
傅立叶变换,假设信号是平稳、周期。如果信号不满足该条件,就不行了。而且傅立叶变化,不能分析信号在某一个时刻的频谱,就是说缺少时频特征。为了得到时频特征,把信号分成一段一段,每一段用傅立叶变换,这就是短时傅立叶变换

5,DFT DTFT FFT有啥区别

对于一般的周期信号可以用一系列(有限个或者无穷多了)正弦波的叠加来表示。这些正弦波的频率都是某一个特定频率的倍数如5hz、2*5hz、3*5hz……(其中的5hz叫基频)。这是傅立叶级数的思想。所以说周期信号的频率是离散的。 而且,对于周期信号有一个特点,信号的周期越长,信号的基频越小。 非周期信号可以看作周期无穷大的周期信号,那么它的基频就是无穷小,这样它的频率组成就编程了连续的了。求这个连续频率的谱线的过程就是傅立叶变换。包括这样几种: DTFT(时间离散,频率连续) DFT(时间和频率都离散,可在计算机中处理) FFT(DFT的优化算法,计算量减少)
1.dft dtft fft有啥区别 对于一般的周期信号可以用一系列(有限个或者无穷多了)正弦波的叠加来表示。这些正弦波的频率都是某一个特定频率的倍数如5hz、2*5hz、3*5hz……(其中的5hz叫基频)。这是傅立叶级数的思想。所以说周期信号的频率是离散的。 而且,对于周期信号有一个特点,信号的周期越长,信号的基频越小。 非周期信号可以看作周期无穷大的周期信号,那么它的基频就是无穷小,这样它的频率组成就编程了连续的了。求这个连续频率的谱线的过程就是傅立叶变换。包括这样几种: dtft(时间离散,频率连续) dft(时间和频率都离散,可在计算机中处理) fft(dft的优化算法,计算量减少)2.离散傅里叶变换dft和离散时间傅里叶变换dtft的区别是啥 离散时间傅里叶变换有时也称为序列傅里叶变换。离散时间傅里叶变换实质上就是单位圆上的(双边)z变换。当时域信号为连续信号时,用连续时间傅里叶变换;为离散信号时,用离散时间傅里叶变换。 离散时间傅里叶变换(dtft,discrete time fourier transform)使我们能够在频域(数字频域)分析离散时间信号的频谱和离散系统的频响特性。但还存在两个实际问题。 1. 数字频率是一个模拟量,为了便于今后用数字的方法进行分析和处理,仅仅在时域将时间变量t离散化还不够,还必须在频域将数字频率离散化。 2. 实际的序列大多为无限长的,为了分析和处理的方便,必须把无限长序列截断或分段,化作有限长序列来处理。 dtft是对任意序列的傅里叶分析,它的频谱是一个连续函数;而dft是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,dft的特点是无论在时域还是频域都是有限长序列。 dft提供了使用计算机来分析信号和系统的一种方法,尤其是dft的快速算法fft,在许多科学技术领域中得到了广泛的应用,并推动了数字信号处理技术的迅速发展。

6,小波分析是什么

小波分析 (Wavelet) 小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。 小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家J.L.Lagrange,P.S.Laplace以及A.M.Legendre的认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法枣多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技信息产业领域取得了令人瞩目的成就。 电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图像处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。 (1)小波分析用于信号与图像压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。 (2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。 (3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。
小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。 小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家J.L.Lagrange,P.S.Laplace以及A.M.Legendre的认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法枣多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技信息产业领域取得了令人瞩目的成就。 电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图像处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。 (1)小波分析用于信号与图像压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。 (2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。 (3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。
小波分析 小波分析 (Wavelet) 小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。 小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家J.L.Lagrange,P.S.Laplace以及A.M.Legendre的认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法枣多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图像处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。与Fourier 变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。 (1)小波分析用于信号与图像压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。 (2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。 (3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。

文章TAG:信号  信号分析  分析  振动  信号分析  
下一篇