本文目录一览

1,PCB电路设计布线问题

直角走线会产生电磁辐射的,过孔连接两个信号层就涉及到信号兼容问题,过孔太多会引起电磁干扰,不利于信号稳定。

PCB电路设计布线问题

2,pcb布线技巧

先要布局好,也可以单层自动布线,不过很有可能有飞线,DESIGN>>rules>>routing里面找route layer把 toplayer 的默认选项Horizontal改成unused 就可以单层自动布线了。最好应该是手动布线。

pcb布线技巧

3,PCB布线原则

PCB布线6大原则  1 电源、地线的处理  既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、 地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述: 众所周知的是在电源、地线之间加上去耦电容。 尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) 用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。  2 数字电路与模拟电路的共地处理  现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。  3 信号线布在电(地)层上  在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。  4 大面积导体中连接腿的处理  在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。  5 布线中网络系统的作用  在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。 标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。  6 设计规则检查(DRC)  布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面: 线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。 电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。 对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。 模拟电路和数字电路部分,是否有各自独立的地线。 后加在PCB中的图形(如图标、注标)是否会造成信号短路。 对一些不理想的线形进行修改。 在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。 多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。概述 本文档的目的在于说明使用PADS的印制板设计软件PowerPCB进行印制板设计的流程和一些注意事项,为一个工作组的设计人员提供设计规范,方便设计人员之间进行交流和相互检查。
线的大小设定,线与线,线和元器件,线与焊盘,线与通孔之间的距离设定,线的优先权设定,比如说你设置GND的线宽为30mil,而其他线只要15mil,那么你就要把地线的布线优先权设定为高于其他线的布线规则。基本上就这些

PCB布线原则

4,PCB怎样布线啦

PCB综合布线的要点一.综合布线电路板设计步骤 一般而言,综合布线设计电路板最基本的过程可以分为三大步骤。(1). 电路原理图的设计: 电路原理图的设计主要是PROTEL099的原理图设计系统(Advanced Schematic)来绘制一张电路原理图。在综合布线这一过程中,要充分利用PROTEL99所提供的各种原理图绘图工具、各种编辑功能,来实现我们的目的,即得到一张正确、精美的电路原理图。 (2). 产生网络表: 网络表是电路原理图设计(SCH)与印制电路板设计(PCB)之间的一座桥梁,它是电路板自动的灵魂。网络表可以从电路原理图中获得,也可从印制电路板中提取出来。 (3). 印制电路板的设计: 印制电路板的设计主要是针对PROTEL99的另外一个重要的部分PCB而言的,在这个过程中,我们借助PROTEL99提供的强大功能实现电路板的版面设计,完成高难度的等工作。   二.绘制简单电路图    2.1 原理图设计过程原理图的设计可按下面过程来完成。 (1)设计图纸大小 Protel 99/ Schematic后,首先要构思好零件图,设计好图纸大小。图纸大小是根据综合布线电路图的规模和复杂程度而定的,设置合适的图纸大小是设计好原理图的第一步。 (2)设置Protel 99/Schematic设计环境 设置Protel 99/Schematic设计环境,包括设置格点大小和类型,光标类型等等,大多数参数也可以使用系统默认值。 (3)旋转零件 用户根据电路图的需要,将零件从零件库里取出放置到图纸上,并对放置零件的序号、零件封装进行定义和设定等工作。 (4)有原理图综合布线 利用Protel 99/Schematic提供的各种工具,将图纸上的元件用具有电气意义的导线、符号连接起来,构成一个完整的原理图。 (5)调整线路 将初步绘制好的电路图作进一步的调整和修改,使得原理图更加美观。 (6)报表输出 通过Protel 99/Schematic提供的各种报表工具生成各种报表,其中最重要的报表是网络表,通过网络表为后续的电路板设计作准备。 (7)文件保存及打印输出 最后的步骤是文件保存及打印输出。   单片机控制板的设计原则需要遵循的原则如下:  (1) 在综合布线元器件的布局方面,应该把相互有关的元件尽量放得*近一些,例如,时钟发生器、晶振、CPU的时钟输入端都易产生噪声,在放置的时候应把它们近些。对于那些易产生噪声的器件、小电流电路、大电流电路开关电路等,应尽量使其远离单片机的逻辑控制电路和存储电路(ROM、RAM),如果可能的话,可以将这些电路另外制成电路板,这样有利于抗干扰,提高电路工作的可*性。 (2) 尽量在关键元件,如ROM、RAM等芯片旁边安装去耦电容。实际上,印制电路板走线、引脚连线和接线等都可能含有较大的电感效应。大的电感可能会在Vcc走线上引起严重的开关噪声尖峰。防止Vcc走线上开关噪声尖峰的唯一方法,是在VCC与电源地之间安放一个0.1uF的电子去耦电容。如果电路板上使用的是表面贴装元件,可以用片状电容直接紧*着元件,在 Vcc引脚上固定。最好是使用瓷片电容,这是因为这种电容具有较低的静电损耗(ESL)和高频阻抗,另外这种电容温度和时间上的介质稳定性也很不错。尽量不要使用钽电容,因为在高频下它的阻抗较高。在安放去耦电容时需要注意以下几点:   在印制电路板的电源输入端跨接100uF左右的电解电容,如果体积允许的话,电容量大一些则更好。   原则上每个集成电路芯片的旁边都需要放置一个0.01uF的瓷片电容,如果电路板的空隙太小而放置不下时,可以每10个芯片左右放置一个1~10的钽电容。对于抗干扰能力弱、关断时电流变化大的元件和RAM、ROM等存储元件,应该在电源线(Vcc)和地线之间接入去耦电容。  综合布线电容的引线不要太长,特别是高频旁路电容不能带引线。(3) 在单片机控制系统中,地线的种类有很多,有系统地、屏蔽地、逻辑地、模拟地等,地线是否布局合理,将决定电路板的抗干扰能力。在设计地线和接地点的时候,应该考虑以下问题:  逻辑地和模拟地要分开布线,不能合用,将它们各自的地线分别与相应的电源地线相连。在设计时,模拟地线应尽量加粗,而且尽量加大引出端的接地面积。一般来讲,对于输入输出的模拟信号,与单片机电路之间最好通过光耦进行隔离。  在设计逻辑电路的印制电路版时,其地线应构成闭环形式,提高电路的抗干扰能力。  综合布线地线应尽量的粗。如果地线很细的话,则地线电阻将会较大,造成接地电位随电流的变化而变化,致使信号电平不稳,导致电路的抗干扰能力下降。在布线空间允许的情况下,要保证主要地线的宽度至少在2~3mm以上,元件引脚上的接地线应该在1.5mm左右。

5,PCB板布线的原则 最基本的

1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、 地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述: 众所周知的是在电源、地线之间加上去耦电容。 尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) 用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。2 数字电路与模拟电路的共地处理现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。3 信号线布在电(地)层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。4 大面积导体中连接腿的处理在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。5 布线中网络系统的作用在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。 标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。6 设计规则检查(DRC)布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面: 线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。 电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。 对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。 模拟电路和数字电路部分,是否有各自独立的地线。 后加在PCB中的图形(如图标、注标)是否会造成信号短路。 对一些不理想的线形进行修改。 在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。 多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。概述 本文档的目的在于说明使用PADS的印制板设计软件PowerPCB进行印制板设计的流程和一些注意事项,为一个工作组的设计人员提供设计规范,方便设计人员之间进行交流和相互检查。
布线主要根据电气性能要求和机械性要求来决定: 1、尽量考虑最短走线原则,可以提高布线密度,有利于电磁兼容; 2、相邻层导线要互相垂直或斜交叉布设; 3、导线的宽度和间距既要满足电气性能又要和符合制造性要求; 4同层相邻线避免长距离,以免降低线间绝缘电阻; 5、印制导线的拐弯处避免尖角。 6、避免走线成环形,以降低高频辐射。
总的来说PCB布线这个活也是需要自己在实践操作中积累经验的。首先,PCB板的整体元件布局要尽可能的做到合理,不然走线会乱七八糟;具体走线一般笼统的说,如有RF射频/音频/I2C要注意屏蔽/包地/走差分线等处理;高速数据(如CPU连接RAM的线)要走等长线;PCB板整体的地要尽可能大;各器件供电的走线宽度要达到要求;有射频的输出线要预留好做阻抗线的条件。这里也不能一下说的很全,有时间可以多参考别人画的一些板,总之就是要自己实践,去做了自然会明白一些道理。

6,PCB布线的常见规则

1.连线精简原则:连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。2.安全载流原则:铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。3.电磁抗干扰原则:电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。扩展资料:布线作为PCB设计过程的重中之重,这将直接影响PCB板的性能好坏,设计过程也最繁琐,要求更高。虽然现在很多高级的EDA工具提供了自动布线功能,而且也相当智能化,但是自动布线并不能保证100%的布通率。因此,很多工程师对自动布线的结果并不满意,手工布线现在还是大部分工程师的选择,通过进行电器规则约束布线,以达到信号完整性的要求。PCB的层数可以分为单层,双层和多层的,单层现在基本淘汰了。双层板现在音响系统中用的挺多,一般是作为功放粗狂型的板子,多层板就是指4层及4层以上的板,对于元器件的密度要求不高的一般来讲4层就足够了。从过孔的角度可以分成通孔,盲孔,和埋孔。通孔就是一个孔是从顶层直接通到底层的;盲孔是从顶层或底层的孔穿到中间层,然后就不继续穿了,这个好处就是这个过孔的位置不是从头堵到尾的,其他层在这个过孔的位置上还是可以走线的;埋孔就是这个过孔是中间层到中间层的,被埋起来的,表面是完全看不到。参考资料:搜狗百科——PCB
布线是整个PCB设计中最重要的工序,布线的好坏,这将直接影响着PCB板的性能好坏。一、PCB布线的顺序:在PCB的设计过程中,布线一般有这么三种境界的划分:1、首先是布 通,这时PCB设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。2、其次是电器性能的满足。这是衡量一块 印刷电路板是否合格的标准。这是在布通之后,认真调整布线,使其能达到最佳的电器性能。3、接着是美观。假如你的布线布通了,也没有什么影响电器性能的地方, 但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。这样给测试和维修带来极大的不便。布线要整齐划一,不能纵横交错毫无章法。这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。  二、PCB布线原则:  1、一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系 是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm。对数字电路的 PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地则不能这样使用)  2、预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。  3、振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;  4、尽可能采用45o的折线布线,不可使用90o折线,以减小高频信号的辐射;(要求高的线还要用双弧线)  5、任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;  6、关键的线尽量短而粗,并在两边加上保护地。  7、通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出。  8、关键信号应预留测试点,以方便生产和维修检测用  9、原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。
PCB布线时遵循的一些基本原则ü 连线要精简,尽可能短,尽量少拐弯,力求走线简单明了(特殊要求除外,如阻抗匹配和时序要求).过长的走线会改变传输线的阻抗特性,使信号的上升时间变长,从而抑制信号的最高传输频率.ü 避免尖角走线和直角走线,宜45°走线和圆弧走线.1.增加走线的寄生电容,影响信号的完整性 2.阻抗不连续造成信号的反射 3.直角尖端易产生EMI效应ü 走线尽可能少换层,少打过孔(via).1.via造成阻抗不连续 2.产生寄生电容和寄生电感,影响信号完整性 3.不同的参考层影响信号回流ü 信号间的距离(S)尽可能增大,相邻信号层的走线宜互相垂直/0斜交/弯曲走线,避免相互平行.减少串扰和耦合造成的信号干扰.ü 电源线和地线的宽度尽可能宽(通常为W20).ü 元器件换层引线和电容的引线尽可能缩短.ü 优化布线.PCB布线的常见形式ü 单根走线(single trace)ü 菊花链(Daisy Chain)走线:从驱动端开始,依次到达各接收端ü 星形(Star)走线:通常所说的“T”点拓扑形式布线ü 蛇形走线:通常所说的饶线,主要目的是为了调节延时,时序匹配ü S≧3H(S:走线平行部分的间距 H:信号与参考平面的间距)ü 差分走线(differential pair)ü 驱动端发送两个等值反相的信号,接受端通过比较这两个电压的差值来判断逻辑状态“0”或“1”,承载差分信号的那对走线称为差分走线ü 与传统单根走线相比的优势ü 抗干扰能力强ü 抑制EMI非常有效ü 时序定位精确

文章TAG:布线  电路  电路设计  设计  pcb布线  
下一篇