本文目录一览

1,什么是微积分

微积分是微分和积分的统称 微分和积分是两种相反的运算
微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。

什么是微积分

2,微积分和微分的区别

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分是微积分的一部分
高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科。而微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支,它是数学的一个基础学科。

微积分和微分的区别

3,微分和积分分别是什么意思了用通俗的语言解释下

微分:由函数B=f(A),得到A、B两个数集,在A中当dx靠近时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割,微分是函数改变量的线性主要部分,微积分的基本概念之一。积分:积分是微积分学与数学分析里的一个核心概念,通常分为定积分和不定积分两种,直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值。
微分:由函数B=f(A),得到A、B两个数集,在A中当dx靠近时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割,微分是函数改变量的线性主要部分,微积分的基本概念之一。积分:积分是微积分学与数学分析里的一个核心概念,通常分为定积分和不定积分两种,直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值。
,微分,积分都是一种极限值,导数的几何意义是函数在该点处的切线的斜率.积分是曲边图形的面积的代数和.晚上在线答不容易,请采纳

微分和积分分别是什么意思了用通俗的语言解释下

4,什么叫微分和积分

笼统的说,微分和积分是对函数的一种变换——从已知函数经过某种过程变成一个新的函数,是一种“定义域”和“值域”都是函数集合的映射(对应)。 如果不考虑相差一个常数的话,微分和积分互为逆变换:对一个函数先求微分,再求积分,等于其本身;对一个函数先求积分,再求微分,等于其本身。 除法是乘法的逆运算,积分是微分的逆运算。就像在整数的范围内乘法一定可行而除法不一定可行(比如5除以3,结果超出了整数范围)一样,在初等函数的范围内,微分一定可行,但是积分却不一定可行(比如对初等函数e^(-x^2)求积分,结果超出了初等函数的范围)。 说明一下,初等函数,就是常数函数(e.g. y=3)、指数函数(e.g. y=e^x)、对数函数(e.g. y=lnx)、各种三角反三角函数、幂函数(e.g. y=x^2) 经过有限次加、减、乘、除、复合后所得到的函数。 微分学的应用包括:求一曲线在给定点的切线,求一曲面在给定点的切面,已知路程函数求速度和加速度等; 积分学的应用包括:求曲线长度,求曲面面积(包括某些平面图形比如说圆的面积),求立体体积,已知加速度函数求速度和路程等。

5,微积分到底是什么

微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。微积分内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法,微积分的基本概念和内容包括微分学和积分学。微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分主要有三大类分支:极限、微分学、积分学。微积分的基本理论表明了微分和积分是互逆运算。牛顿和莱布尼兹发现了这个定理以后才引起了其他学者对于微积分学的狂热的研究。这个发现使我们在微分和积分之间互相转换。这个基本理论也提供了一个用代数计算许多积分问题的方法,该方法并不真正进行极限运算而是通过发现不定积分。该理论也可以解决一些微分方程的问题,解决未知数的积分。微分问题在科学领域无处不在。

文章TAG:微分和积分  什么是微积分  
下一篇