本文目录一览

1,马尔可夫链的定义

百度百科上有详细解释http://baike.baidu.com/view/340221.htm不过还是推荐看相关随机的书吧
马尔可夫链蒙特卡罗mcmc方法属于统计物理中一类重要的随机方法。被广泛应用于贝叶斯推断和机器学习。其思想是估计期望值,根据分布进行采样,为了从分布中采样,构造一条马尔科夫链。

马尔可夫链的定义

2,有谁知道马尔科夫链条是什么东东

马尔可夫链,因安德烈?马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。如果X_http://baike.baidu.com/view/340221.htm?fr=ala0_1
1890年后,英国的亨伯公司生产出一种用链条传动的、车为菱型的自行车,这种形式的自行车一直沿用至今。在此之前的自行车一直都没有链条,所以最早发明链条并用于自行车传动的是英国的亨伯公司。

有谁知道马尔科夫链条是什么东东

3,如何浅显易懂的深刻理解马尔科夫链

下一时刻状态仅取决于现在的状态,过去的状态对未来状态没有直接影响。记得采纳啊
如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程 nx(t+1) = f( x(t) ) 时间和状态都离散的马尔科夫过程称为马尔科夫链 记作{xn = x(n), n = 0,1,2,…} –在时间集t1 = {0,1,2,…}上对离散状态的过程相继观察的结果 链的状态空间记做i = {a1, a2,…}, ai∈r. 条件概率pij ( m ,m+n)=p{xm+n = aj|xm = ai} 为马氏链在时刻m处于状态ai条件下,在时刻m+n转移到状态aj的转移概率。 由于链在时刻m从任何一个状态ai出发,到另一时刻m+n,必然转移到a1,a2…,诸状态中的某一个,所以有 当pij(m,m+n)与m无关时,称马尔科夫链为齐次马尔科夫链,通常说的马尔科夫链都是指齐次马尔科夫链。 马链的要义就是:如果你想展望未来那么你应立足今日,忘记昨天。 验证是不是马氏链,应该验证是否具有马氏性。所谓马氏性,就是明日只与今日 有关,与前日并无直接的关系。只要验证明日至于今日有关就行了。 立足今日,不能忘记昨天,而是完全记住昨天。未来的成就依赖与以往的历史造就的现在的你。 马尔可夫链应用 什么是markov链? 马尔可夫链,因安德烈·马尔可夫(a.a.markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 马尔可夫链是随机变量x_1,x_2,x_3...的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而x_n的值则是在时间n的状态。如果x_{n+1}对于过去状态的条件概率分布仅是x_n的一个函数,则 p(x_{n+1}=x|x_0, x_1, x_2, \ldots, x_n) = p(x_{n+1}=x|x_n). \, 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。 马尔可夫在1906年首先做出了这类过程 。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。

如何浅显易懂的深刻理解马尔科夫链

4,有哪位高手解释下马尔科夫链啊完全看不懂的

青蛙最熟了。随机过程里面的。就是“青蛙跳荷叶”的规则。 http://baike.baidu.com/view/3053716.html?wtp=tt
如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程 nx(t+1) = f( x(t) ) 时间和状态都离散的马尔科夫过程称为马尔科夫链 记作{xn = x(n), n = 0,1,2,…} –在时间集t1 = {0,1,2,…}上对离散状态的过程相继观察的结果 链的状态空间记做i = {a1, a2,…}, ai∈r. 条件概率pij ( m ,m+n)=p{xm+n = aj|xm = ai} 为马氏链在时刻m处于状态ai条件下,在时刻m+n转移到状态aj的转移概率。 由于链在时刻m从任何一个状态ai出发,到另一时刻m+n,必然转移到a1,a2…,诸状态中的某一个,所以有 当pij(m,m+n)与m无关时,称马尔科夫链为齐次马尔科夫链,通常说的马尔科夫链都是指齐次马尔科夫链。 马链的要义就是:如果你想展望未来那么你应立足今日,忘记昨天。 验证是不是马氏链,应该验证是否具有马氏性。所谓马氏性,就是明日只与今日 有关,与前日并无直接的关系。只要验证明日至于今日有关就行了。 立足今日,不能忘记昨天,而是完全记住昨天。未来的成就依赖与以往的历史造就的现在的你。 马尔可夫链应用 什么是markov链? 马尔可夫链,因安德烈·马尔可夫(a.a.markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 马尔可夫链是随机变量x_1,x_2,x_3...的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而x_n的值则是在时间n的状态。如果x_{n+1}对于过去状态的条件概率分布仅是x_n的一个函数,则 p(x_{n+1}=x|x_0, x_1, x_2, \ldots, x_n) = p(x_{n+1}=x|x_n). \, 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。 马尔可夫在1906年首先做出了这类过程 。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。

5,什么是马尔科夫链

  马尔可夫链,因安德烈?马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。   马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则   P(X_{n+1}=x|X_0, X_1, X_2, \ldots, X_n) = P(X_{n+1}=x|X_n).   这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。   马尔可夫在1906年首先做出了这类过程 。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。   马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。   它们是后面进行推导必不可少的条件:(1)尺度间具有马尔可夫性质.随机场从上到下形成了马尔可夫链,即 Xi 的分布只依赖于 Xi,与其他更粗 糙的尺度无关,这是因为 Xi 已经包含了所有位于其上层的尺度所含有的信息.(2) 随机场像素的条件独立性.若 Xi 中像素的父节点已知,则 Xi 中的像素彼此独立.这一性质使我们不必再 考虑平面网格中相邻像素间的关系,而转为研究尺度间相邻像素(即父子节点)间的关系.(3) 设在给定 Xn 的情况下,Y 中的像素彼此独立.(4) 可分离性.若给定任一节点 xs,则以其各子节点为根的子树所对应的变量相互独立.   从只有一个节点的根到和图像大小一致的叶子节点,建立了完整的四叉树模型,各层间的马尔可夫链的因 果关系使我们可以由非迭代的推导过程快速计算出 X 的最大后验概率或后验边缘概率.   完整的四叉树模型也存在一些问题.(1) 因概率值过小,计算机的精度难以保障而出现下溢,若层次多,这一 问题更为突出.虽然可以通过取对数的方法将接近于 0 的小值转换成大的负值,但若层次过多、概率值过小,该 方法也难以奏效,且为了这些转换所采用的技巧又增加了不少计算量.(2) 当图像较大而导致层次较多时,逐层 的计 算甚 为繁琐 下 溢 现 象肯定 会出 现 , 存储中 间变 量也 会占 用大 量空 间 , 在时 间空间 上都 有更 多的 开销 .   (3) 分层模型存在块效应,即区域边界可能出现跳跃,因为在该模型中,同一层随机场中相邻的像素不一定有同 一个父节点,同一层的相邻像素间又没有交互,从而可能出现边界不连续的现象.   为了解决这些问题,我们提出一种新的分层 MRF 模型——半树模型,其结构和图1 5类似,仍然是四叉树,   只 是层数比完整的四叉树大大减少,相当于将完整的四叉树截为两部分,只取下面的这部分.模型最下层仍和图像 大小一致,但最上层则不止一个节点.完整的四叉树模型所具有的性质完全适用于半树模型,不同点仅在于最上层,完整的树模型从上到下构成 了完整的因果依赖性,而半树模型的层间因果关系被截断,该层节点的父节点及祖先均被删去,因此该层中的各 节点不具有条件独立性,即不满足上述的性质 2,因而对这一层转为考虑层内相邻节点间的关系.半树模型和完 整的树模型相比,层次减少了许多,这样,层次间的信息传递快了,概率值也不会因为过多层次的逐层计算而小 到出现下溢.但第 0 层带来了新的问题,我们必须得考虑节点间的交互,才能得出正确的推导结果,也正是因为在 第 0 层考虑了相邻节点间的影响,使得该模型的块现象要好于完整的树模型.对于层次数的选取,我们认为不宜多,太多则达不到简化模型的目的,其优势体现不出来,但也不能太少,因 为第 0 层的概率计算仍然要采用非迭代的算法,层数少表明第 0 层的节点数仍较多,计算费时,所以在实验中将 层数取为完整层次数的一半或一半稍少.   3半树模型的 MPM 算法   图像分割即已知观测图像 y,估计 X 的配置,采用贝叶斯估计器,可由一个优化问题来表示:   ?x = arg min [E C ( x, x )′ | Y = y] ,x其中代价函数 C 给出了真实配置为 x 而实际分割结果为 x′时的代价.在已知 y 的情况下,最小化这一代价的期 望,从而得到最佳的分割.代价函数取法不同得到了不同的估计器,若 C(x,x′)=1?δ(x,x′)(当 x=x′时δ(x,x′)=1,否则 δ(x,x′)=0)得到的是 MAP 估计器,它意味着 x 和 x′只要在一个像素处有不同,则代价为 1,对误分类的惩罚比较重,汪西莉 等:一种分层马尔可夫图像模型及其推导算法   而在实际中存在一些误分类是完全允许的.若将半树模型的 MPM 算法记为 HT-MPM,它分为向上算法和向下算法两步,向上算法自下而上根据式(2)、 式 (3)逐层计 算P(yd(s)|xs)和 P(xs,xρ(s)|yd(s)), 对最下层 P(yd(s)|xs)=P(ys|xs). 向下算法自上 而下根据 式 (1)逐层计算 P(xs|y),对最上层由 P(x0|y)采样 x0(1),…,x0(n),

6,什么是马尔科夫链法

一、马尔科夫转移矩阵法的涵义 单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有 率。 市场占有率的预测可采用马尔科夫转移矩阵法,也就是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。马尔科夫是俄国数学家,他在20世纪初发现:一个系统的某些因素在转移中,第n次结果只受第n-1的结果影响,只与当前所处状态有关,与其他无关。比如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计:销售额都无关。 , 在马尔科夫分析中,引入状态转移这个概念。所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转穆到另一种状态的概率。 马尔科夫分析法的一般步骤为: ①调查目前的市场占有率情况; ②调查消费者购买产品时的变动情况; ③建立数学模型; ④预测未来市场的占有率。 二、马尔科夫分析模型 实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。 马尔科夫分析法的基本模型为: X(k+1)=X(k)×P 公式中:X(k)表示趋势分析与预测对象在t=k时刻的状态向量,P表示一步转移概率矩阵, X(k+1)表示趋势分析与预测对象在t=k+1时刻的状态向量。 必须指出的是,上述模型只适用于具有马尔科夫性的时间序列,并且各时刻的状态转移概率保持稳定。若时间序列的状态转移概率随不同的时刻在变化,不宜用此方法。由于实际的客观事物很难长期保持同一状态的转移概率,故此法一般适用于短期的趋势分析与预测。 三、马尔科夫过程的稳定状态 在较长时间后,马尔科夫过程逐渐处于稳定状态,且与初始状态无关。马尔科夫链达到稳定状态的概率就是稳定状态概率,也称稳定 概率。市场趋势分析中,要设法求解得到市场趋势分析对象的稳态概率,并以此做市场趋势分析。 在马尔科夫分析法的基本模型中,当X:XP时,称X是P的稳定概率,即系统达到稳定状态时的概率向量,也称X是P的固有向量或特征向量,而且它具有唯一性。 四,马尔科夫转移矩阵法的应用 马尔科夫分析法,是研究随机事件变化趋势的一种方法。市场商品供应的变化也经常受到各种不确定因素的影响而带有随机性,若其具有"无后效性",则用马尔科夫分析法对其未来发展趋势进行市场趋势分析五,提高市场占有率的策略预测市场占有率是供决策参考的,企业要根据预测结果采取各种措施争取顾客。提高市场占有率一般可采取三种策略: (1)设法保持原有顾客; (2)尽量争取其他顾客; (3)既要保持原有顾客又要争取新的顾客。 第三种策略是前两种策略的综合运用,其效果比单独使用一种策略要好,但其所需费用较高。如果接近于平稳状态时,一般不必花费竞争费用。所以既要注意市场平稳状态的分析,又要注意市场占有率的长期趋势的分析。 争取顾客、提高市场占有率的策略和措施一般有: ①扩大宣传。主要采取广告方式,通过大众媒体向公众宣传商品特征和顾客所能得到的利益,激起消费者的注意和兴趣。 ②扩大销售。除联系现有顾客外,积极地寻找潜在顾客,开拓市场。如向顾客提供必要的服务等。 ③改进包装。便于顾客携带,增加商品种类、规格、花色,便于顾客挑选,激发顾客购买兴趣。 ④开展促销活动。如展销、分期付款等。 ⑤调整经营策略。根据市场变化,针对现有情况调整销售策略,如批量优待、调整价格、市场渗透、提高产品性能、扩大产品用途、降低产品成本等,以保持市场占有率和扩大市场占有率。 马尔科夫分析模型 实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。 马尔科夫分析法的基本模型为: X(k+1)=X(k)×P 公式中:X(k)表示趋势分析与预测对象在t=k时刻的状态向量,P表示一步转移矩阵概率, X(k+1)表示趋势分析与预测对象在t=k+1时刻的状态向量。 必须指出的是,上述模型只适用于具有马尔科夫性的时间序列,并且各时刻的状态转移概率保持稳定。若时间序列的状态转移概率随不同的时刻在变化,不宜用此方法。由于实际的客观事物很难长期保持同一状态的转移概率,故此法一般适用于短期的趋势分析与预测。 请参考,希望对你有所帮助!
如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程 nx(t+1) = f( x(t) ) 时间和状态都离散的马尔科夫过程称为马尔科夫链 记作{xn = x(n), n = 0,1,2,…} –在时间集t1 = {0,1,2,…}上对离散状态的过程相继观察的结果 链的状态空间记做i = {a1, a2,…}, ai∈r. 条件概率pij ( m ,m+n)=p{xm+n = aj|xm = ai} 为马氏链在时刻m处于状态ai条件下,在时刻m+n转移到状态aj的转移概率。 由于链在时刻m从任何一个状态ai出发,到另一时刻m+n,必然转移到a1,a2…,诸状态中的某一个,所以有 当pij(m,m+n)与m无关时,称马尔科夫链为齐次马尔科夫链,通常说的马尔科夫链都是指齐次马尔科夫链。 马链的要义就是:如果你想展望未来那么你应立足今日,忘记昨天。 验证是不是马氏链,应该验证是否具有马氏性。所谓马氏性,就是明日只与今日 有关,与前日并无直接的关系。只要验证明日至于今日有关就行了。 立足今日,不能忘记昨天,而是完全记住昨天。未来的成就依赖与以往的历史造就的现在的你。 马尔可夫链应用 什么是markov链? 马尔可夫链,因安德烈·马尔可夫(a.a.markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 马尔可夫链是随机变量x_1,x_2,x_3...的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而x_n的值则是在时间n的状态。如果x_{n+1}对于过去状态的条件概率分布仅是x_n的一个函数,则 p(x_{n+1}=x|x_0, x_1, x_2, \ldots, x_n) = p(x_{n+1}=x|x_n). \, 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。 马尔可夫在1906年首先做出了这类过程 。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。
abcdefgh

文章TAG:马尔科夫  马尔科夫链  科夫  马尔  马尔科夫链  
下一篇