本文目录一览

1,南通安思卓新能源有限公司怎么样

简介:南通安思卓新能源有限公司是全球氢能领域领先企业,公司致力于氢能全产业链核心设备的技术研发及设备生产,并与世界各大科研机构和产业公司合作,共同推动氢能产业在全球的发展应用。公司拥有世界领先的新能源水电解制氢技术、光解催化制氢技术、氢燃料电池应用技术和常温常压储氢技术等,覆盖了氢能源制备、储运和应用等核心环节。法定代表人:李海明成立时间:2017-06-02注册资本:36800万人民币工商注册号:320682400002055企业类型:有限责任公司(中外合资)公司地址:南通市如皋市城北街道起凤西路333号

南通安思卓新能源有限公司怎么样

2,氢产业是什么东西

氢气在工业中有广泛用途:人们利用氢气可以从氧化合物中夺取氧的性质,在冶金工业可以冶炼金属。例如,在军事工业和民用工业上都很重要的金属钨、钼等,就是利用氢气炼制出来的。用氢气冶炼金属钨的化学方程式如下:WO3 + 3H2=加热△=3H2O + W根据同样的道理,电子工业可以利用氢气来制取半导体材料——高纯硅。 氢气也是重要的化工原料。如可以利用氢气来制造氨(NH3),并进一步制造化肥。也可以用氢气制造盐酸,把液态植物油制成人造黄油等。氢气还是一种理想的燃料。氢气的资源非常丰富,水就是氢的仓库。而氢气的燃烧产物又是水,人们一旦利用太阳能从水中制取廉价氢气的技术得以突破,氢气就将成为取之不尽用之不竭的能源。
不明白啊 = =!

氢产业是什么东西

3,氢能的产业链有哪些能科普一下吗

氢燃料电池主要包括电池组件和燃料两个部分。因此其上游主要是氢气供应以及电池零组件。氢气供应部分主要是为燃料氢气而准备的,主要流程包括氢气生产、输送和充气机。而电池零组件部分则主要生产燃料电池组、氢气存储设备和配件。中游则是将上述组装,形成一个完整的可投入使用的燃料电池系统,每种系统构成都依据其不同的应用领域而有所不同。下游的应用板块则主要包括了固定、交通运输和便携式三个主要领域。  产业链的核心在于中游的燃料电池系统,系统的组成必定要对应下游的应用,而在燃料电池系统中,燃料电池模块是最为重要的。一般燃料电池由电解质、催化剂和双极板构成,在这三者中,催化剂的有无对燃料电池成本的影响最为巨大。  对于PEMFC来说,由于其使用昂贵的铂族金属作为催化剂,其价格一直居高不下,可以说,催化剂是燃料电池价格的决定性因素之一。另一个重要的决定因素这是电解质,不同技术类型的燃料电池堆电解质的要求不同,不同的电解质的价格也会有所不同,并最终对燃料电池价格产生影响。
没有

氢能的产业链有哪些能科普一下吗

4,氢能汽车的产业前景

“氢能汽车上路还需15年”国际油价持续飙升,让人叫苦不迭。美国政府提出以氢燃料电池车为主要措施解决美国交通能源问题,这似乎带来了美好希望。不过,麻省理工学院的一些能源专家日前则提醒公众,氢燃料电池车真正要“跑起来”,至少还需要15年的时间。对于氢燃料电池车上路的时间表,麻省理工学院(MIT)能源委员会近日出台报告说,与车辆相比,性能与价格具有竞争力的氢燃料电池车真能“上路”、“跑起来”,至少还需要15年;而要让氢燃料电池车被大规模采用,达到明显降低现有车辆对石油依赖程度的目的,可能还需要50年的时间。MIT能源委员会的约翰·海伍特教授指出,作为一项颇具潜力的、能替代石油燃料的技术措施,氢燃料电池车的“路障”涉及到氢燃料的生产、储存和输送基础设施,以及燃料电池的成本等问题。他强调,发展所谓的以氢为燃料的“氢交通经济”确实是一个巨大的挑战。即便价格与性能被公众接受,氢燃料电池车还需要几十年的时间才能被大规模采用。海伍特解释说,氢燃料电池车的推广要受许多因素的制约。首先,新技术车辆大规模应用是早还是晚,主要受到现有车辆平均寿命的限制。车辆平均寿命是15年。无论是先进的内燃发动机车、混合车,还是氢燃料电池车,即使有人买了这些具有新技术的车e79fa5e98193e58685e5aeb931333361303035辆,大多数车主需要15年才能换车,这些年内,旧车还会在路上跑,还会在继续烧汽油,继续排放二氧化碳等温室气体。第二,配有新技术的车辆在厂家生产车间,从第一台到批量生产一般需要几年的时间,到大规模推广又得几年之后。拿油电混合车来说,混合车有全新的技术,但市场份额却增长缓慢。混合车在美国1999年上市,到目前为止市场份额却只有1%。第三,从推广氢燃料电池车对解决交通石油燃料危机的影响角度说,欧洲过去25年推广柴油发动机的经验表明,短期内节省燃料有效措施并不一定来自全新的技术,而在于如何在现有车辆技术基础上更好地进行改进,更经济地使用燃料。MIT能源专家在报告中预计,即使研制出具有价格和性能竞争力的氢燃料电池车,还将需要25年左右的时间,才能使其占新车和轻型卡车销售的份额达到35%,而要使氢燃料电池车替代现有35%的车辆的话,还会再需要20年左右的时间。在讨论氢燃料电池车时间表的同时,专家们也给政府交通能源政策出了不少主意。他们认为,与氢燃料电池车的情况相比,改进内燃发动机性能、减轻车辆重量等措施,倒是有可能对减少车辆过度耗油产生“立竿见影”的效果。先进的内燃发动机、清洁的柴油发动机以及油电混合车在未来30年内将对节省交通石油燃料产生很大的影响。MIT的专家们还认为,应该大力提倡一些新技术措施,包括发展油耗低的经济型车辆,从严修订车辆燃料经济性标准,提高汽油消费税等,当然,这些需要政府牵头鼓励汽车厂家实施以及公众积极配合,才能实现减少车辆过度耗油的目的。不过,他们也承认,有效降低美国的巨大交通石油燃料消费量,确实是一大挑战。他们的好想法并不一定会被美国民众广泛接受和采纳。因为长期以来,美国汽车文化中并没有太多地考虑节约石油,而是一味地追求车辆的舒适性。同时,对于那些能很快舒缓车辆过度耗油问题、潜力巨大的技术措施,美国政府也并没有像热衷“氢经济”计划项目那样,予以大力支持和足够的投资。

5,氢能源在哪里开发

氢能源的开发与利用  当今世界开发新能源迫在眉睫,原因是目前所用的能源如石油、天然气、煤,均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。  氢能是一种二次能源,它是通过一定的方法利用其它能源制取的,而不像煤、石油和天然气等可以直接从地下开采、几乎完全依靠化石燃料。随着石化燃料耗量的日益增加,其储量日益减少,终有一天这些资源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。氢正是这样一种在常规能源危机的出现和开发新的二次能源的同时,人们期待的新的二次能源。 氢位于元素周期表之首,原子序数为1,常温常压下为气态,超低温高压下为液态。作为一种理想的新的合能体能源,它具有以下特点:  l、重量最轻的元素。标准状态下,密度为 0.8999g/l,-252.7℃时,可成为液体,若将压力增大到数百个大气压,液氢可变为金属氢。  2、导热性最好的气体,比大多数气体的导热系数高出10倍。  3、自然界存在最普遍的元素。据估计它构成了宇宙质量的 75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大9000倍。  4、除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142,351kJ/kg,是汽油发热值的3倍。  5、燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。  6、无毒,与其他燃料相比氢燃烧时最清洁滁生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境,且燃烧生成的水还可继续制氢,反复循环使用。产物水无腐蚀性,对设备无损。  7、利用形式多。既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。  8、可以以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求。  9、可以取消远距离高压输电,代以远近距离管道输氢,安全性相对提高,能源无效损耗减小。  10、氢取消了内燃机噪声源和能源污染隐患,利用率高。  11、氢可以减轻燃料自重,可以增加运载工具有效载荷,这样可以降低运输成本从全程效益考虑社会总效益优于其他能源。  时至今日,氢能的利用已有长足进步。自从1965年美国开始研制液氢发动机以来,相继研制成功了各种类型的喷气式和火箭式发动机。美国的航天飞机已成功使用液氢做燃料。我国长征2号、3号也使用液氢做燃料。利用液氢代替柴油,用于铁路机车或一般汽车的研制也十分活跃。氢汽车靠氢燃料、氢燃料电池运行也是沟通电力系统和氢能体系的重要手段。  目前,世界各国正在研究如何能大量而廉价的生产氢。利用太阳能来分解水是一个主要研究方向,在光的作用下将水分解成氢气和氧气,关键在于找到一种合适的催化剂。如今世界上有50多个实验室在进行研究,至今尚未有重大突破,但它蕴育着广阔的前景。  发展氢能源,将为建立一个美好、无污染的新世界迈出重要一步。  在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的是二氧化碳和二氧化硫,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。  氢是一种无色的气体。燃烧一克氢能释放出142千焦尔的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。  在大自然中,氢的分布很广泛。水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从水中制取氢,那么氢也将是一种价格相当便宜的能源。  氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领,可将热量储存起来,作为房间内取暖和空调使用。  氢作为气体燃料,首先被应用在汽车上。1976年5月,美国研制出一种以氢作燃料的汽车;后来,日本也研制成功一种以液态氢为燃料的汽车;70年代末期,前联邦德国的奔驰汽车公司已对氢气进行了试验,他们仅用了五千克氢,就使汽车行驶了110公里。  用氢作为汽车燃料,不仅干净,在低温下容易发动,而且对发动机的腐蚀作用小,可延长发动机的使用寿命。由于氢气与空气能够均匀混合,完全可省去一般汽车上所用的汽化器,从而可简化现有汽车的构造。更令人感兴趣的是,只要在汽油中加入4%的氢气。用它作为汽车发动机燃料,就可节油40%,而且无需对汽油发动机作多大的改进。  氢气在一定压力和温度下很容易变成液体,因而将它用铁罐车、公路拖车或者轮船运输都很方便。液态的氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的长征运载火箭,都是用液态氢作燃料的。  另外,使用氢—氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在宇宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。  现在世界上氢的年产量约为3600万吨,其中绝大部分是从石油、煤炭和天然气中制取的,这就得消耗本来就很紧缺的矿物燃料;另有4%的氢是用电解水的方法制取的,但消耗的电能太多,很不划算,因此,人们正在积极探索研究制氢新方法。  随着太阳能研究和利用的发展,人们已开始利用阳光分解水来制取氢气。在水中放入催化剂,在阳光照射下,催化剂便能激发光化学反应,把水分解成氢和氧。例如,二氧化钛和某些含钌的化合物,就是较适用的光水解催化剂。人们预计,一旦当更有效的催化剂问世时,水中取“火”——制氢就成为可能,到那时,人们只要在汽车、飞机等油箱中装满水,再加入光水解催化剂,那么,在阳光照射下,水便能不断地分解出氢,成为发动机的能源。  本世纪70年代,人们用半导体材料钛酸锶作光电极,金属铂作暗电极,将它们连在一起,然后放入水里,通过阳光的照射,就在铂电极上释放出氢气,而在钛酸锶电极上释放出氧气,这就是我们通常所说的光电解水制取氢气法。  科学家们还发现,一些微生物也能在阳光作用下制取氢。人们利用在光合作用下可以释放氢的微生物,通过氢化酶诱发电子,把水里的氢离子结合起来,生成氢气。前苏联的科学家们已在湖沼里发现了这样的微生物,他们把这种微生物放在适合它生存的特殊器皿里,然后将微生物产生出来的氢气收集在氢气瓶里。这种微生物含有大量的蛋白质,除了能放出氢气外,还可以用于制药和生产维生素,以及用它作牧畜和家禽的饲料。现在,人们正在设法培养能高效产氢的这类微生物,以适应开发利用新能源的需要。  引人注意的是,许多原始的低等生物在新陈代谢的过程中也可放出氢气。例如,许多细菌可在一定条件下放出氢。日本已找到一种叫做“红鞭毛杆菌”的细菌,就是个制氢的能手。在玻璃器皿内,以淀粉作原料,掺入一些其他营养素制成的培养液就可培养出这种细菌,这时,在玻璃器皿内便会产生出氢气。这种细菌制氢的效能颇高,每消耗五毫升的淀粉营养液,就可产生出25毫升的氢气。  美国宇航部门准备把一种光合细菌——红螺菌带到太空中去,用它放出的氢气作为能源供航天器使用。这种细菌的生长与繁殖很快,而且培养方法简单易行,既可在农副产品废水废渣中培养,也可以在乳制品加工厂的垃圾中培育。  对于制取氢气,有人提出了一个大胆的设想:将来建造一些为电解水制取氢气的专用核电站。譬如,建造一些人工海岛,把核电站建在这些海岛上,电解用水和冷却用水均取自海水。由于海岛远离居民区,所以既安全,又经济。制取的氢和氧,用铺设在水下的通气管道输入陆地,以便供人们随时使用。

6,氢燃料电池应用领域

航天领域20世纪60年代,氢燃料电池就已经成功地应用于航天领域。往返于太空和地球之间的“阿波罗”飞船就安装了这种体积小、容量大的装置。进入70年代以后,随着人们不断地掌握多种先进的制氢技术,很快,氢燃料电池就被运用于发电和汽车。(福建亚南集团为清洁能源解决方案供应商,致力于氢能燃料电池产业化的企业。亚小南为您解答4000-080-999)大型电站,无论是水电、火电或核电,都是把发出的电送往电网,由电网输送给用户。但由于各用电户的负荷不同,电网有时呈现为高峰,有时则呈现为低谷,这就会导致停电或电压不稳。另外,传统的火力发电站的燃烧能量大约有70%要消耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会消耗大量的能源和排放大量的有害物质。而使用氢燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,能量转换率可达60%~80%,而且污染少、噪音小,装置可大可小,非常灵活。氢的化学特性活跃,它可同许多金属或合金化合。某些金属或合金吸收氢之后,形成一种金属氢化物,其中有些金属氢化物的氢含量很高,甚至高于液氢的密度,而且该金属氢化物在一定温度条件下会分解,并把所吸收的氢释放出来,这就构成了一种良好的贮氢材料。汽车应用20辆中国自主研制的氢燃料电池轿车在同济大学新能源汽车工程中心举行赴京发车仪式,它们将在奥运福田氢燃料电池客车福田氢燃料电池客车 [2]会中投入运营。这20辆氢燃料电池轿车是基于大众帕萨特领驭车型,通过改制和集成最新一代燃料电池轿车动力系统平台而成功研发出来的。它们以氢气为能源,经氢氧化学反应生成水,真正实现零污染。氢燃料电池轿车加一次氢可跑300多公里,时速达每小时140~150公里。氢燃料电池轿车比同类型内燃机车重200多公斤,贵5倍以上。氢燃料电池车的工作原理是:将氢气送到燃料电池的阳极板(负极),经过催化剂(铂)的作用,氢原子中的一个电子被分离出来,失去电子的氢离子(质子)穿过质子交换膜,到达燃料电池阴极板(正极),而电子是不能通过质子交换膜的,这个电子,只能经外部电路,到达燃料电池阴极板,从而在外电路中产生电流。电子到达阴极板后,与氧原子和氢离子重新结合为水。由于供应给阴极板的氧,可以从空气中获得,因此只要不断地给阳极板供应氢,给阴极板供应空气,并及时把水(蒸气)带走,就可以不断地提供电能。燃料电池发出的电,经逆变器、控制器等装置,给电动机供电,再经传动系统、驱动桥等带动车轮转动,就可使车辆在路上行驶。与传统汽车相比,燃料电池车能量转化效率高达60~80%,为内燃机的2~3倍。燃料电池的燃料是氢和氧,生成物是清洁的水,它本身工作不产生一氧化碳和二氧化碳,也没有硫和微粒排出。因此,氢燃料电池汽车是真正意义上的零排放、零污染的车,氢燃料是完美的汽车能源!氢燃料电池车的优势毋庸置疑,劣势也是显而易见。随着科技的进步,曾经困扰氢燃料电池发展的诸如安全性、氢燃料的贮存技术等问题已经逐步攻克并不断完善,然而成本问题依然是阻碍氢燃料电池车发展的最大瓶颈。氢燃料电池的成本是普通汽油机的100倍,这个价格是市场所难以承受的。据悉,这批氢燃料电池车,最大输出功率高达60千瓦,燃料消耗仅为每百公里1.2公斤氢气,大约相当于4升93号汽油。英国政府将大力发展氢燃料电池汽车,计划在2030年之前使英国氢燃料电池车保有量达到160万辆,并在2050年之前使其市场占有率达到30%-50%。政府将从2015年起实现氢燃料电池汽车本土化生产,并自行研发相关技术,另外还将建设氢燃料补给站。 [3] 目前丰田汽车公司已经将燃料电池的成本大幅降低, 整车价格控制在6.9万美元(40万人民币), 可提供100KW动力输出, 续航能力达到700公里. 并将在北美和日本本土上市, 上市时间为2015年上半年. [4] 飞机应用工作原理燃料电池(Fuel Cell),是一种发电装置,但不像一般非充电电池一样用完就丢弃,也不像充电电池一样,用完须继续充电,燃料电池正如其名,是继续添加燃料以维持其电力,所需的燃料是“氢”,其之所以被归类为新能源,原因就在此。燃料电池的运作原理(如图1),也就是电池含有阴阳两个电极,分别充满电解液,而两个电极间则为具有渗透性的薄膜所构成。氢气由燃料电池的阳极进入,氧气(或空气)则由阴极进入燃料电池。经由催化剂的作用,使得阳极的氢分子分解成两个质子(proton)与两个电子(electron),其中质子被氧吸引到薄膜的另一边,电子则经由外电路形成电流后,到达阴极。在阴极催化剂之作用下,质子、氧及电子,发生反应形成水分子,因此水可说是燃料电池唯一的排放物。燃料电池所使用的“氢”燃料可以来自于水的电解所产生的氢气及任何的碳氢化合物,例如天然气、甲醇、乙醇(酒精)、沼气等等。由于燃料电池是经由利用氢及氧的化学反应,产生电流及水,不但完全无污染,也避免了传统电池充电耗时的问题,是目前最具发展前景的新能源方式,如能普及并应用在车辆及其他高污染之发电工具上,将能显著减轻空气污染及温室效应。氢燃料电池飞机氢燃料电池飞机时速百公里波音公司于2008年4月3日成功试飞氢燃料电池为动力源的一架小型飞机。波音公司称这在世界航空史上尚属首次,预示航空工业未来更加环保。但波音承认,这一技术不太可能为大型客机提供主要动力。波音公司于2008年2月至3月3次在西班牙奥卡尼亚镇进行试飞氢燃料电池飞机,成功试飞具有历史意义。 小型飞机起飞及爬升过程使用传统电池与氢燃料电池提供的混合电力。爬升至海拔1000米巡航高度后,飞机切断传统电池电源,只靠氢燃料电池提供动力。飞机在1000米高空飞行了约20分钟,时速约100公里。这一技术对波音公司意义重大,也让航空工业的未来“充满绿色希望”。小型飞机由奥地利“钻石”(Diamond)双座螺旋桨动力滑翔机改装而成,飞机内安装了质子交换膜燃料电池和锂离子电池。小型飞机翼展16.3米,机身长6.5米,重约800公斤,可容纳两人。试飞过程中,机上只有飞行员一人。在机舱内,传统电池安放于唯一的乘客座位上,飞行员背后有一个类似潜水员使用的氧气罐。波音公司说,这架飞机连续飞行时间最长45分钟,“不会产生任何噪音”。氢燃料电池通过氢转化为水的过程产生电流,不产生温室气体。除热量外,水蒸气是氢燃料电池产生的唯一副产品。波音的氢燃料电池飞机带来技术突破,但“波音(欧洲)研究与技术”部称,。这一技术可能为大型飞机提供辅助动力,但这需要技术突破。技术局限性在燃料价格上涨、环境污染与全球变暖的情况下,对更清洁、更安全、效率更高的交通工具的需求快速增长。波音的氢燃料电池飞机带来技术突破,但波音(欧洲)研究与技术部负责人埃斯卡蒂说,氢燃料电池可以为小型飞机提供飞行动力,但不能为大型客机提供主要动力。波音公司负责试飞工作的工程师涅韦斯·拉佩纳说,这一技术可能为大型飞机提供辅助动力,但这需要技术突破。波音公司说,将继续开发氢燃料电池的潜力,以改善环境。国际能源机构说,推广使用氢气和氢燃料电池,可减少石油、天然气、煤炭这三种可产生温室气体的能源消耗。
燃料电池并不是真的发生燃烧而发电,而是将燃烧反应分为两个半反应分别在两极进行,应该很安全阳极反应:h2→2h++2e阴极反应:1/2o2+2h++2e→h2o 总反应:h2+1/2 o2=h2o
燃料电池用途广泛,既可应用于军事、空间、发电厂领域,也可应用于机动车、移动设备、居民家庭等领域。早期燃料电池发展焦点集中在军事空间等专业应用以及千瓦级以上分散式发电上。电动车领域成为燃料电池应用的主要方向,市场已有多种采用燃料电池发电的自动车出现。另外,透过小型化的技术将燃料电池运用于一般消费型电子产品也是应用发展方向之一,在技术的进步下,未来小型化的燃料电池将可用以取代现有的锂电池或镍氢电池等高价值产品,作为用于笔记本电脑、无线电电话、录像机、照相机等携带型电子产品的电源。近20多年来,燃料电池经历了碱性、磷酸、熔融碳酸盐和固体氧化物等几种类型的发展阶段,燃料电池的研究和应用正以极快的速度在发展。在所有燃料电池中,碱性燃料电池(afc)发展速度最快,主要为空间任务,包括航天飞机提供动力和饮用水;质子交换膜燃料电池(pemfc)已广泛作为交通动力和小型电源装置来应用;磷酸燃料电池(pafc)作为中型电源应用进入了商业化阶段,是民用燃料电池的首选;熔融碳酸盐型燃料电池(mcfc)也已完成工业试验阶段;起步较晚的固态氧化物燃料电池(sofc)作为发电领域最有应用前景的燃料电池,是未来大规模清洁发电站的优选对象。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式,而燃料电池就是比较理想的发电技术。燃料电池十分复杂,涉及化学热力学、电化学、电催化、材料科学、电力系统及自动控制等众多学科相关理论,具有发电效率高、环境污染少等优点。电力固定燃料电池被用于商业、工业及住宅和备用电源。热电联产热电联产(chp)燃料电池系统,包括微型热电联产(micro combined heat and power , microchp)系统。燃料电池车(fcevs)

文章TAG:氢能  产业  产业链  南通  氢能产业链  
下一篇