本文目录一览

1,纳维斯托克斯方程的具体含义

Navier-Stokes equations 描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。因1821年由C.-L.-M.-H.纳维和1845年由G.G.斯托克斯分别导出而得名。在直角坐标系中,可表达为如图所示!其矢量形式为=-

纳维斯托克斯方程的具体含义

纳维-斯托克斯方程(英文名;Navier-Stokes equations),描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。粘性流体的运动方程首先由Navier在1827年提出,只考虑了不可压缩流体的流动。Poisson在1831年提出可压缩流体的运动方程。Saint-Venant在1845年,Stokes在1845年独立提出粘性系数为一常数的形式,现在都称为Navier-Stokes方程,简称N-S方程。在直角坐标系中,其矢量形式为=-?p+ρF+μΔv。

什么是 NavierStokes 方程

3,怎么推导无量纲的navierstokes方程

纳维叶-斯托克斯(Navier-Stokes)流体力学方程。起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。

怎么推导无量纲的navierstokes方程

4,ns方程是什么呢

ns方程是纳维-斯托克斯方程。纳维-斯托克斯方程是用于描述流体运动的方程,可以看作是流体运动的牛顿第二定律。就NS方程的推导及其所反映的客观现象而言,NS方程是对流体微元在瞬时意义上变形运动的描述。在流体力学本构方程中的压力是天外来客,在力学本质上,压力的空间梯度是微元体惯性力的表征。ns方程的由来:1821年,法国著名工程师克劳德-路易·纳维首先推广了欧拉关于流体力学的理论,纳威此时考虑了分子间的作用力,并在方程中加了一个粘性常数。然而这仿佛还不够,1845年,爱尔兰数学家乔治·加布里埃尔·斯托克斯爵士从连续统的模型出发,给出了具有2个粘性常数的流体力学方程,这也就是现在鼎鼎大名的纳维斯托克斯方程,N-S方程。

5,纳维斯托克斯方程的介绍

纳维-斯托克斯方程(英文名;Navier-Stokes equations),描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。粘性流体的运动方程首先由Navier在1827年提出,只考虑了不可压缩流体的流动。Poisson在1831年提出可压缩流体的运动方程。Saint-Venant在1845年,Stokes在1845年独立提出粘性系数为一常数的形式,现在都称为Navier-Stokes方程,简称N-S方程。在直角坐标系中,其矢量形式为=-?p+ρF+μΔv。

6,纳维斯托克斯方程是什么

纳维斯托克斯方程是流体力学中描述粘性牛顿流体的方程,是目前为止尚未被完全解决的方程,目前只有大约一百多个特解被解出来,是最复杂的方程之一。十九世纪,一些科学家看到了理论流体与工程实际相差太远,试图给欧拉的理想流体运动方程加上摩擦力项。纳维,柯西,泊松,圣维南和斯托克斯分别以自己不同的方式对欧拉方程作了修正。现在,这些粘性流体的基本方程称为NavierStokes方程。但是由于NS方程是数学中最为难解的非线性方程中的一类,寻求它的精确解是非常困难的事。直至今天,大约也只有70多个精确解。纳维叶斯托克斯方程的存在性与光滑性起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶斯托克斯方程的解,来对它们进行解释和预言。 虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶斯托克斯方程中的奥秘。

7,navierstokes 方程是什么啊

纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随抄着我们的正在湖中蜿蜒穿梭的袭小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通2113过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是526119世纪写下的,我们对4102它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能1653解开隐藏在纳维叶-斯托克斯方程中的奥秘。
navier stokes(纳维叶-斯托克斯)方程是流体力学中描述粘性牛顿流体的方程,是目前为止尚未被完全解决的方程,目前只有大约一百多个特解被解出来,是最复杂的方程之一。

8,navier Stokes方程是什么

Navier Stokes(纳维叶-斯托克斯)方程是流体力学中描述粘性牛顿流体的方程,是目前为止尚未被完全解决的方程,目前只有大约一百多个特解被解出来,是最复杂的方程之一。纳维斯托克斯方程是千禧年大奖难题其中之一。 在我们日常生活中,起伏的波浪,湍急的气流都会对我们的出行工具,飞机和轮船产生影响,数学家和物理学家认为论是风还是湍流,都可以通过求解纳维斯托克斯方程来解决,来对影响进行解释和预测。方程早是19世纪就完成了,但直到今天我们对它们的理解仍然有限。问题的难点在于对方程的数学理论做出实质性的解释,以探索隐藏在纳维斯托克斯方程中的奥秘。无粘流体运动方程:1、纳维斯托克斯方程的矢量形式:2、写成分量形式:式中,△是拉普拉斯算子;ρ表示流体密度;p代表压力,u,v,w是流体在t时刻的速度分量。X,Y,Z是外力的分量;常数μ是动力粘性系数,纳维斯托克斯方程方程描述了粘性不可压缩流体流动的普遍规律,因而在流体力学中具有特殊意义。3、粘性可压缩流体运动方程的形式为:4、其中方程内P表示流体应力张量,l为单位张量;S代表变形速率张量,方程的分量形式为:5、其中μ为膨胀粘性系统,一般μ=0。若流体是均质和不可压缩的,μ=常数.▽·v=0,此时方程第3点可简化成纳维斯托克斯方程第1点和第1点。如果我们再忽略流体粘性,则第1点就变成通常的欧拉方程:即无粘流体运动方程。从理论上来说,我们有了包括纳维斯托克斯方程,只要再加上一定的初始条件和合适的边界条件,我们就可以确定流体的流动。但是由于纳维斯托克斯方程比欧拉方程多了一个二阶导数项μ▽v,因此变得更为复杂,除在一些特定条件下,很难求出纳维斯托克斯方程的精确解。Navier Stokes方程的存在性与光滑性:起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。两相流动方程:这是流体力学里面的知识。一般两相流指固液两相流动。或者汽液,研究的方程就是N-S方程(进行简化,本身是个庞大的偏微分方程组)。也有三相流,汽固液。相关的需要参考一些EI(工程检索),最好是SCI的检索。目前国内主要研究两相流,三相流只是停留在理论阶段,实际工程应用偏少!纳维-斯托克斯方程(Navier-Stokes equations)描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。因1821年由C.-L.-M.-H.纳维和1845年由G.G.斯托克斯分别导出而得名。在直角坐标系中,可表达为如图所示!其矢量形式为=-▽p+ρF+μΔv,式中ρ为流体密度,p为压强,u(u,v,w)为速度矢量,F(X,Y,Z)为作用于单位质量流体的彻体力,▽为哈密顿算子,Δ为拉普拉斯算子。后人在此基础上又导出适用于可压缩流体的N-S方程。N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-?p+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。在计算机问世和迅速发展以后,N-S方程的数值求解才有了很大的发展。基本假设:在解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。第一个是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强,速度,密度,温度,等等。该方程从质量,动量,和能量的守恒的基本原理导出。对此,有时必须考虑一个有限地任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为\Omega,而其表面记为\partial\Omega。该控制体积可以在空间中固定,也可能随着流体运动。在计算有关空气压膜阻尼的时候,将各个方向上的纳维斯托克斯方程通过一系列的近似和化简可以得到线性和非线性的雷诺方程。

9,纳维 斯托克斯方程

纳维 斯托克斯方程的每一项均表示单位质量的作用力:左边第一项为由于运动的非定常性而引起的局部惯性力,左边其余三项为由于运动的非均匀性而引起的变位惯性力;右边第一项为质量力,第二项为粘性流体压力的合力,右边其余各项为粘性力,粘性力项中又可划分为粘性切向力和粘性附加法向力两项。根据这一方程每项的物理意义,在某些情况下可以进行简化。例如对于极慢运动的圆球或极薄的润滑油膜,可以略去惯性力项。又例如在边界层理论中,可以略去部分的粘性力。在这些情况下,不进行这种简化,是很难积分求解的。
都看过了还要说?N-S方程的原形对人力计算而言基本上没用,太复杂,只有通过假定简化条件才能用。
navier-stokes equations 描述粘性不可压缩流体动量守恒的运动方程。简称n-s方程。因1821年由c.-l.-m.-h.纳维和1845年由g.g.斯托克斯分别导出而得名。在直角坐标系中,可表达为如图所示!其矢量形式为=-

10,纳维斯托克斯方程的含义

纳维-斯托克斯方程(Navier-Stokes equation)描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。此方程是法国科学家C.-L.-M.-H.纳维于1821年和英国物里学家G.G.斯托克斯于1845年分别建立的,故名。它的矢量形式为: 在直角坐标中,它可写成 式中,△是拉普拉斯算子;ρ是流体密度;p是压力;u,v,w是流体在t时刻,在点(x,y,z)处的速度分量。X,Y,Z是外力的分量;常数μ是动力粘性系数,N-S方程概括了粘性不可压缩流体流动的普遍规律,因而在流体力学中具有特殊意义。粘性可压缩流体运动方程的普遍形式为 其中为P流体应力张量;l为单位张量;S为变形速率张量,在直角坐标中其分量为: μ,为膨胀粘性系统,一般情况下μ,=0。若游动是均质和不可压缩的,这时μ=常数.▽·v=0则方程(3)可简化成N-S方程(1)和(2)。如果再忽略流体粘性,则(1)就变成通常的欧拉方程:即无粘流体运动方程(见流体力学基本方程组)。从理论上讲,有了包括N-S方程在内的基本方程组,再加上一定的初始条件和边界条件,就可以确定流体的流动。但是,由于N-S方程比欧拉方程多了一个二阶导数项μ▽v,因此,除在一些特定条件下,很难求出方程的精确解。可求得精确解的最简单情况是平行流动。这方面有代表性的流动是圆管内的哈根-泊肃叶流动(见管流)和两平行平板间的库埃特流动(见牛顿流体)。在许多情况下,不用解出N-S方程,只要对N-S方程各项作量级分析,就可以确定解的特性,或获得方程的近似解。对于雷诺数Re《1,的情况,方程左端的加速度项与粘性项相比可忽略,从而可求得斯托克斯流动的近似解。RA.密立根根据这个解给出了一个最有名的应用,即空气中细小球状油滴的缓慢流动。对于雷诺数Re》1的情况,粘性项与加速度项相比可忽略,这时粘性效应仅局限于物体表面附近的边界层内,而在边界层之外,流体的行为实质上同无粘性流体一样,所以其流场可用欧拉方程求解。把N-S方程沿流线积分可得到粘性流体的伯努利方程: 式中g为重力加速度;hf,为单位质量流体克服阻力作功而引起的机械能损失。因此,流体沿流线流动时,机械能会转化成热能,使流体温度升高。

文章TAG:纳维斯托克斯方程  纳维斯托克斯方程的具体含义  
下一篇